地理科学进展 ›› 2020, Vol. 39 ›› Issue (8): 1412-1422.doi: 10.18306/dlkxjz.2020.08.014
收稿日期:
2019-11-04
修回日期:
2020-04-05
出版日期:
2020-08-28
发布日期:
2020-10-28
通讯作者:
吴吉东
作者简介:
邬柯杰(1997— ),男,硕士生,主要从事自然灾害风险管理研究。E-mail: 基金资助:
WU Kejie1,2(), WU Jidong1,2,*(
), YE Mengqi1,2
Received:
2019-11-04
Revised:
2020-04-05
Online:
2020-08-28
Published:
2020-10-28
Contact:
WU Jidong
Supported by:
摘要:
社交媒体是灾害应急管理的一个新兴但尚未充分利用的大数据源。然而,社交媒体数据在灾害应急管理中能发挥什么作用,目前国内的研究较少,而国外的研究亦较为分散,相关应用受限。论文对国内外利用社交媒体数据进行灾害管理相关研究进行了综述,归纳出社交媒体数据在灾害应急管理中应用的潜力、优势和问题。结果发现:① 社交媒体数据含有丰富的灾害信息,能够依靠态势感知和信息共享支持灾害预警、实时监测、损失和救助需求评估、协助快速应急响应以及预测可能的灾害风险等灾害管理工作;② 社交媒体数据的优势在于能保证灾害信息的实时性和连续性,进而提供致灾强度图、损失预测和舆情分析等结果服务于灾害应急管理;③ 地理位置信息有限、专业语料库缺乏、信息噪声处理的复杂性等原因使社交媒体数据分析结果精度受限。如何发挥社交媒体数据社会感知的优势,以弥补传统观测调查手段的不足,更加科学应对灾害应急,仍需要在社交媒体数据处理及多源数据融合分析技术方面取得突破。
邬柯杰, 吴吉东, 叶梦琪. 社交媒体数据在自然灾害应急管理中的应用研究综述[J]. 地理科学进展, 2020, 39(8): 1412-1422.
WU Kejie, WU Jidong, YE Mengqi. A review on the application of social media data in natural disaster emergency management[J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1412-1422.
[1] | Sun Q Y, Li X Y, Yu F. Designing an emergency continuity plan for a megacity government: A conceptual framework for coping with natural catastrophes[J]. International Journal of Critical Infrastructure Protection, 2016,13:28-35. |
[2] | 王静爱, 史培军, 朱骊. 中国主要自然致灾因子的区域分异[J]. 地理学报, 1994,49(1):18-26. |
[ Wang Jing'ai, Shi Peijun, Zhu Li. Regional variations of major natural disaster-causing factors in China. Acta Geographica Sinica, 1994,49(1):18-26. ] | |
[3] | Altay N, Green III W G. OR/MS research in disaster operations management[J]. European Journal of Operational Research, 2006,175(1):475-493. |
[4] | Galindo G, Batta R. Review of recent developments in OR/MS research in disaster operations management[J]. European Journal of Operational Research, 2013,230(2):201-211. |
[5] | Akter S, Wamba S F. Big data and disaster management: A systematic review and agenda for future research[J]. Annals of Operations Research, 2017,283(2):1-21. |
[6] | 史培军, 孔锋, 叶谦, 等. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014,29(11):1205-1211. |
[ Shi Peijun, Kong Feng, Ye Qian, et al. Disaster risk science development and disaster risk reduction using science and technology. Advances in Earth Science, 2014,29(11):1205-1211. ] | |
[7] | 吴吉东, 何鑫, 王菜林, 等. 自然灾害损失分类及评估研究评述[J]. 灾害学, 2018,33(4):157-163. |
[ Wu Jidong, He Xin, Wang Cailin, et al. A review on classification and loss assessment of natural disasters. Journal of Catastrophology, 2018,33(4):157-163. ] | |
[8] | Lin Moe T, Pathranarakul P. An integrated approach to natural disaster management: Public project management and its critical success factors[J]. Disaster Prevention and Management, 2006,15(3):396-413. |
[9] | Eckhardt D, Leiras A, Thomé A M T. Systematic literature review of methodologies for assessing the costs of disasters[J]. International Journal of Disaster Risk Reduction, 2019,33:398-416. |
[10] | 李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016,45(4):379-384. |
[ Li Deren. Towards geo-spatial information science in big data era. Acta Geodaetica et Cartographica Sinica, 2016,45(4):379-384. ] | |
[11] | 梁春阳, 林广发, 张明锋, 等. 社交媒体数据对反映台风灾害时空分布的有效性研究[J]. 地球信息科学学报, 2018,20(6):807-816. |
[ Liang Chunyang, Lin Guangfa, Zhang Mingfeng, et al. Assessing the effectiveness of social media data in mapping the distribution of typhoon disasters. Journal of Geo-information Science, 2018,20(6):807-816. ] | |
[12] | Lindsay B R. Social media and disasters: Current uses, future options, and policy considerations [R/OL]. Congressional Research Service Report R41987. https://fas.org/sgp/crs/homesec/R41987.pdf. 2011. |
[13] | Landwehr P M, Carley K M. Social media in disaster relief[M]// Wu W W. Data mining and knowledge discovery for big data. Berlin, Germany: Springer, 2014: 225-257. |
[14] |
Alexander D E. Social media in disaster risk reduction and crisis management[J]. Science and Engineering Ethics, 2014,20(3):717-733.
pmid: 24306994 |
[15] | Joyce K E, Belliss S E, Samsonov S V, et al. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters[J]. Progress in Physical Geography, 2009,33(2):183-207. |
[16] | Jasper K, Gurtz J, Lang H. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model[J]. Journal of Hydrology, 2002,267(1-2):40-52. |
[17] | Goodchild M F. Citizens as sensors: The world of volunteered geography[J]. GeoJournal, 2007,69(4):211-221. |
[18] | Goodchild M F. Citizens as voluntary sensors: Spatial data infrastructure in the world of Web 2.0[J]. International Journal of Spatial Data Infrastructures Research, 2007,2(2):24-32. |
[19] | 张红平, 顾学云, 熊萍, 等. 志愿者地理信息研究与应用初探[J]. 地理信息世界, 2012,10(4):67-71. |
[ Zhang Hongping, Gu Xueyun, Xiong Ping, et al. Research and application of volunteer geographic information. Geomatics World, 2012,10(4):67-71. ] | |
[20] | Scharl A, Tochtermann K. The geospatial Web: How geobrowsers, social software and the Web 2.0 are shaping the network society[M]. New York, USA: Springer, 2007. |
[21] | Smith J B. Collective intelligence in computer-based collaboration[M]. Washington D C, USA: American Psychological Association, 1996. |
[22] | Turner A. Introduction to neogeography[M]. Sebastopol, USA: O'Reilly Media, 2006. |
[23] | Hjorth L, Kim K Y. The mourning after: A case study of social media in the 3.11 earthquake disaster in Japan[J]. Television & New Media, 2011,12(6):552-559. |
[24] |
Houston J B, Hawthorne J, Perreault M F, et al. Social media and disasters: A functional framework for social media use in disaster planning, response, and research[J]. Disasters, 2015,39(1):1-22.
doi: 10.1111/disa.12092 pmid: 25243593 |
[25] | Starbird K, Palen L, Hughes A L, et al. Chatter on the red: What hazards threat reveals about the social life of microblogged information[C]// ACM. Proceedings of the 2010 ACM conference on computer supported cooperative work. New York, USA: Association for Computing Machinery, 2010. |
[26] | Vieweg S, Hughes A L, Starbird K, et al. Microblogging during two natural hazards events: What twitter may contribute to situational awareness[C]// ACM. Proceedings of the SIGCHI conference on human factors in computing systems. New York, USA: Association for Computing Machinery, 2010. |
[27] | Acar A, Muraki Y. Twitter for crisis communication: Lessons learned from Japan's tsunami disaster[J]. International Journal of Web Based Communities, 2011,7(3):392-402. |
[28] | Bruns A, Burgess J, Crawford K, et al. #qldfloods and @QPSMedia: Crisis communication on Twitter in the 2011 South East Queensland floods [R/OL]. https://eprints.qut.edu.au/48241/. ARC Centre of Excellence for Creative Industries and Innovation. Brisbane, Australia: Queensland University of Technology, 2012. |
[29] | Dugdale J, Van de Walle B, Koeppinghoff C. Social media and SMS in the Haiti earthquake[C]// ACM. Proceedings of the 21st international conference on world wide web. New York, USA: Association for Computing Machinery, 2012. |
[30] | Starbird K, Muzny G, Palen L. Learning from the crowd: Collaborative filtering techniques for identifying on-the-ground Twitterers during mass disruptions[C]// ACM. Proceedings of 9th international conference on information systems for crisis response and management. Vancouver, Canada: Simon Fraser University, 2012. |
[31] | Imran M, Elbassuoni S, Castillo C, et al. Extracting information nuggets from disaster-related messages in social media[C]// ACM. Proceedings of the tenth international conference on information systems for crisis response and management (ISCRAM'13). Baden-Baden, Germany, 2013: 12-15. |
[32] | Neubaum G, Rösner L, Rosenthal-von der Pütten A M, et al. Psychosocial functions of social media usage in a disaster situation: A multi-methodological approach[J]. Computers in Human Behavior, 2014,34:28-38. |
[33] | Mersham G. Social media and public information management: The September 2009 tsunami threat to New Zealand[J]. Media International Australia, 2010,137(1):130-143. |
[34] | Wang Z, Ye X. Space, time, and situational awareness in natural hazards: A case study of Hurricane Sandy with social media data[J]. Cartography and Geographic Information Science, 2019,46(4):334-346. |
[35] | Bakillah M, Li R Y, Liang S H L. Geo-located community detection in Twitter with enhanced fast-greedy optimization of modularity: The case study of typhoon Haiyan[J]. International Journal of Geographical Information Science, 2015,29(2):258-279. |
[36] |
Arthur R, Boulton C A, Shotton H, et al. Social sensing of floods in the UK[J]. PLoS One, 2018,13(1):e0189327. doi: 10.1371/journal.pone.0189327.
pmid: 29385132 |
[37] | Wang Y, Ruan S, Wang T, et al. Rapid estimation of an earthquake impact area using a spatial logistic growth model based on social media data[J]. International Journal of Digital Earth, 2019,12(11):1265-1284. |
[38] | Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: Real-time event detection by social sensors[C]// ACM. Proceedings of the 19th international conference on world wide web. New York, USA: Association for Computing Machinery, 2010. |
[39] | Crooks A, Croitoru A, Stefanidis A, et al. Earthquake: Twitter as a distributed sensor system[J]. Transactions in GIS, 2013,17(1):124-147. |
[40] | 孙振凯. PAGER: 地震影响的快速评估(USGS情况说明书第2010-3036号)[J]. 国际地震动态, 2013(1):4-7. |
[ Sun Zhenkai. PAGER: Rapid assessment of the impact of earthquakes (USGS fact sheet No. 2010-3036). Recent Developments in World Seismology, 2013(1):4-7. ] | |
[41] | Resch B, Usländer F, Havas C. Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment[J]. Cartography and Geographic Information Science, 2018,45(4):362-376. |
[42] | Ogie R I, Forehead H. Investigating the accuracy of georeferenced social media data for flood mapping: The PetaJakarta.org case study[C]// Hellingrath B, Gojmerac R. Proceedings of the 2017 4th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM). New York, USA: IEEE, 2017: 30-35. |
[43] | Yuan F, Liu R. Feasibility study of using crowdsourcing to identify critical affected areas for rapid damage assessment: Hurricane Matthew case study[J]. International Journal of Disaster Risk Reduction, 2018,28:758-767. |
[44] | Kongthon A, Haruechaiyasak C, Pailai J, et al. The role of social media during a natural disaster: A case study of the 2011 Thai flood[J]. International Journal of Innovation and Technology Management, 2014,11(3):2227-2232. |
[45] | Wu D, Cui Y. Disaster early warning and damage assessment analysis using social media data and geo-location information[J]. Decision Support Systems, 2018,111:48-59. |
[46] | Fang J, Hu J, Shi X, et al. Assessing disaster impacts and response using social media data in China: A case study of 2016 Wuhan rainstorm[J]. International Journal of Disaster Risk Reduction, 2019,34:275-282. |
[47] | Enenkel M, Saenz S M, Dookie D S, et al. Social media data analysis and feedback for advanced disaster risk management [J/OL]. Computing Research Repository, 2018: 1802.02631. https://arxiv.org/abs/1802.02631. |
[48] | Priya S, Bhanu M, Dandapat S K, et al. Characterizing infrastructure damage after earthquake: a split-query based IR approach[C]// ACM. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). New York, USA: Association for Computing Machinery, 2018: 202-209. |
[49] | Li X, Caragea D, Zhang H, et al. Localizing and quantifying damage in social media images[C]// ACM. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). New York, USA: Association for Computing Machinery, 2018: 194-201. |
[50] | Schnebele E, Cervone G, Waters N. Road assessment after flood events using non-authoritative data[J]. Natural Hazards and Earth System Sciences, 2014,14(4):1007-1015. |
[51] | Vo Bao-Khanh H, Collier N. Twitter emotion analysis in earthquake situations[J]. International Journal of Computational Linguistics and Applications, 2013,4(1):159-173. |
[52] | Sadri A M, Hasan S, Ukkusuri S V, et al. Crisis communication patterns in social media during Hurricane Sandy[J]. Transportation Research Record, 2018,2672(1):125-137. |
[53] | Varga I, Sano M, Torisawa K, et al. Aid is out there: Looking for help from tweets during a large scale disaster[C]// Schuetze H, Fung P, Poesio M. Proceedings of the 51st annual meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Sofia, Bulgaria, 2013: 1619-1629. |
[54] |
Martín Y, Li Z, Cutter S L. Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew[J]. PLoS One, 2017,12(7):e0181701. doi: 10.1371/journal.pone.0181701.
pmid: 28753667 |
[55] | Kumar D, Ukkusuri S V. Utilizing geo-tagged tweets to understand evacuation dynamics during emergencies: A case study of Hurricane Sandy[C]// Champin P, Gandon F, Médini L. Companion Proceedings of the the web conference 2018. Geneva, Switzerland: International World Wide Web Conferences Steering Committee, 2018: 1613-1620. |
[56] | Gruebner O, Lowe S, Sykora M, et al. Spatio-temporal distribution of negative emotions in New York City after a natural disaster as seen in social media[J]. International Journal of Environmental Research and Public Health, 2018,15(10):2275. doi: 10.3390/ijerph15102275. |
[57] | Tang Z, Zhang L, Xu F, et al. Examining the role of social media in California's drought risk management in 2014[J]. Natural Hazards, 2015,79(1):171-193. |
[58] | Yin J, Lampert A, Cameron M, et al. Using social media to enhance emergency situation awareness[J]. IEEE Intelligent Systems, 2012,27(6):52-59. |
[59] |
Kryvasheyeu Y, Chen H, Obradovich N, et al. Rapid assessment of disaster damage using social media activity[J]. Science Advances, 2016,2(3):e1500779. doi: 10.1126/sciadv.1500779.
doi: 10.1126/sciadv.1500779 pmid: 27034978 |
[60] | Earle P S, Bowden D C, Guy M. Twitter earthquake detection: Earthquake monitoring in a social world[J]. Annals of Geophysics, 2012,54(6):708-715. |
[61] |
Morss R E, Demuth J L, Lazrus H, et al. Hazardous weather prediction and communication in the modern information environment[J]. Bulletin of the American Meteorological Society, 2017,98(12):2653-2674.
doi: 10.1175/BAMS-D-16-0058.1 |
[62] |
Zou L, Lam N S N, Cai H, et al. Mining Twitter data for improved understanding of disaster resilience[J]. Annals of the American Association of Geographers, 2018,108(5):1422-1441.
doi: 10.1080/24694452.2017.1421897 |
[63] | Barker J L P, Macleod C J A. Development of a national-scale real-time Twitter data mining pipeline for social geodata on the potential impacts of flooding on communities[J]. Environmental Modelling & Software, 2019,115:213-227. |
[64] |
Liu F, Xu D. Social roles and consequences in using social media in disasters: A structurational perspective[J]. Information Systems Frontiers, 2018,20(4):693-711.
doi: 10.1007/s10796-017-9787-6 |
[65] |
Laylavi F, Rajabifard A, Kalantari M. A multi-element approach to location inference of twitter: A case for emergency response[J]. ISPRS International Journal of Geo-Information, 2016,5(5):56. doi: 10.3390/ijgi5050056.
doi: 10.3390/ijgi5050056 |
[66] | Gao H, Barbier G, Goolsby R. Harnessing the crowdsourcing power of social media for disaster relief[J]. IEEE Intelligent Systems, 2011,26(3):10-14. |
[67] | 曹劲舟, 武红宇. 基于微博位置签到数据的POI更新方法[J]. 地理空间信息, 2013,11(2):15-18. |
[ Cao Jingzhou, Wu Hongyu. POI update method based on weibo location check-in data. Geospatial Information, 2013,11(2):15-18. ] | |
[68] | Sakaki T, Matsuo Y, Kurihara S, et al. The possibility of social media analysis for disaster management[C]// IEEE. 2013 IEEE Region 10 Humanitarian Technology Conference. New York, USA: IEEE, 2013: 238-243. |
[69] |
Yu M, Yang C, Li Y. Big data in natural disaster management: A review[J]. Geosciences, 2018,8(5):165. doi: 10.3390/geosciences8050165.
doi: 10.3390/geosciences8050165 |
[70] | Ghurye J, Krings G, Frias-Martinez V. A framework to model human behavior at large scale during natural disasters[C]// IEEE. 2016 17th IEEE International Conference on Mobile Data Management (MDM). New York, USA: IEEE, 2016: 18-27. |
[71] |
Kusumo A N L, Reckien D, Verplanke J. Utilising volunteered geographic information to assess resident's flood evacuation shelters. Case study: Jakarta[J]. Applied Geography, 2017,88:174-185.
doi: 10.1016/j.apgeog.2017.07.002 |
[72] | Chan J C. The role of social media in crisis preparedness, response and recovery [R/OL]. http://www.oecd.org/governance/risk/The%20role%20of%20Social%20media%20in%20crisis%20preparedness,%20response%20and%20recovery.pdf. OECD Report, 2012: 1-16. |
[73] |
Feng Y, Sester M. Extraction of pluvial flood relevant volunteered geographic information (VGI) by deep learning from user generated texts and photos[J]. ISPRS International Journal of Geo-Information, 2018,7(2):39. doi: 10.3390/ijgi7020039.
doi: 10.3390/ijgi7020039 |
[74] | Virtual Social Media Working Group, DHS First Responders Group. Lessons learned: Social media and hurricane sandy [R/OL]. Homeland Security: Science and Technology. https://www.hsdl.org/?view&did=739332. Washington D C, USA: US Department of Homeland Security, 2013. |
[75] |
Cervone G, Sava E, Huang Q, et al. Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study[J]. International Journal of Remote Sensing, 2016,37(1):100-124.
doi: 10.1080/01431161.2015.1117684 |
[76] |
Liou Y A, Kar S K, Chang L. Use of high-resolution FORMOSAT-2 satellite images for post-earthquake disaster assessment: A study following the 12 May 2008 Wenchuan Earthquake[J]. International Journal of Remote Sensing, 2010,31(13):3355-3368.
doi: 10.1080/01431161003727655 |
[77] |
Yan Y, Eckle M, Kuo C L, et al. Monitoring and assessing post-disaster tourism recovery using geotagged social media data[J]. ISPRS International Journal of Geo-Information, 2017,6(5):144. doi: 10.3390/ijgi6050144.
doi: 10.3390/ijgi6050144 |
[78] | 周利敏, 刘和健. 人工智能时代的社交媒体与灾害治理: 兼论国际案例[J]. 理论探讨, 2019(6):175-181. |
[ Zhou Limin, Liu Hejian. On social media and disaster management in the age of artificial intelligence and international cases. Theoretical Discussion, 2019(6):175-181. ] | |
[79] | 徐伟, 赵斌, 吉根林. 基于滑动窗口的微博时间线摘要算法[J]. 数据采集与处理, 2017,32(3):523-532. |
[ Xu Wei, Zhao Bin, Ji Genlin. A time line summary algorithm based on sliding window. Data Acquisition and Processing, 2017,32(3):523-532. ] | |
[80] | Becker H, Naaman M, Gravano L. Beyond trending topics: Real-world event identification on twitter[C]// Adamic L A, Baeza-Yates R, Counts S. Proceedings of the fifth international conference on weblogs and social media. Barcelona, Spain, 2011: 438-441. |
[81] | Huang Y, Dong H, Yesha Y, et al. A scalable system for community discovery in twitter during hurricane sandy[C]// IEEE. 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. New York, USA: IEEE, 2014: 893-899. |
[82] | Win S S M, Aung T N. Target oriented tweets monitoring system during natural disasters[C]// IEEE. 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). New York, USA: IEEE, 2017: 143-148. |
[83] | 孙铁利, 刘延吉. 中文分词技术的研究现状与困难[J]. 信息技术, 2009,33(7):187-189. |
[ Sun Tieli, Liu Yanji. Research status and difficulties of Chinese word segmentation technology. Information Technology, 2009,33(7):187-189. ] | |
[84] | 吴建胜, 战学刚, 迟呈英. 一种基于自动机的分词方法[J]. 计算机工程与应用, 2005,41(8):81-82. |
[ Wu Jiansheng, Zhan Xuegang, Chi Chengying. A word segmentation method based on automata. Computer Engineering and Applications, 2005,41(8):81-82. ] | |
[85] | 赵伟, 戴新宇, 尹存燕, 等. 一种规则与统计相结合的汉语分词方法[J]. 计算机应用研究, 2004,21(3):23-25. |
[ Zhao Wei, Dai Xinyu, Yin Cunyan, et al. A Chinese word segmentation method combining rules and statistics. Computer Application Research, 2004,21(3):23-25. ] | |
[86] | 张长利, 赫枫龄, 左万利. 一种基于后缀数组的无词典分词方法[J]. 吉林大学学报(理学版), 2004,42(4):548-553. |
[ Zhang Changli, He Fengling, Zuo Wanli. A lexicographical word segmentation method based on suffix array. Journal of Jilin University (Science Edition), 2004,42(4):548-553. ] | |
[87] | 刘商飞, 张志祥. 基于改进的Bayes判别法的中文多义词消歧[J]. 计算机与数字工程, 2009,37(10):32-35. |
[ Liu Shangfei, Zhang Zhixiang. Chinese polysemy disambiguation based on the improved Bayes discrimination method. Computer & Digital Engineering, 2009,37(10):32-35. ] | |
[88] | 张珊, 于留宝, 胡长军. 基于表情图片与情感词的中文微博情感分析[J]. 计算机科学, 2012,39(S3):146-148. |
[ Zhang Shan, Yu Liubao, Hu Changjun. Emotion analysis of Chinese microblog based on emoticons and emoticons. Computer Science, 2012,39(S3):146-148. ] | |
[89] | 陈永波. 微博图像文字内容识别与感知[D]. 北京: 北京交通大学, 2014. |
[ Chen Yongbo. Weibo image text content recognition and perception. Beijing, China: Beijing Jiaotong University, 2014. ] | |
[90] | 关雪峰, 曾宇媚. 时空大数据背景下并行数据处理分析挖掘的进展及趋势[J]. 地理科学进展, 2018,37(10):14-27. |
[ Guan Xuefeng, Zeng Yumei. Development and trend of parallel data processing in the context of spatiotemporal big data. Progress in Geography, 2018,37(10):14-27. ] | |
[91] | 杨喜平, 方志祥. 移动定位大数据视角下的人群移动模式及城市空间结构研究进展[J]. 地理科学进展, 2018,37(7):18-27. |
[ Yang Xiping, Fang Zhixiang. Research progress of crowd moving mode and urban spatial structure from the perspective of mobile positioning big data. Progress in Geography, 2018,37(7):18-27. ] | |
[92] |
Li Z, Wang C, Emrich C T, et al. A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods[J]. Cartography and Geographic Information Science, 2018,45(2):97-110.
doi: 10.1080/15230406.2016.1271356 |
[1] | 戎晓庆, 庞奖励, 黄春长, 周亚利, 王兆夺, 张玉柱, 郭永强, 赵辉, 炊郁达. 青海官亭盆地史前灾难性地表过程及其影响研究[J]. 地理科学进展, 2020, 39(8): 1319-1332. |
[2] | 李智轩, 何仲禹, 张一鸣, 金霜霜, 王雪梅, 朱捷, 刘师岑. 绿色环境暴露对居民心理健康的影响研究——以南京为例[J]. 地理科学进展, 2020, 39(5): 779-791. |
[3] | 谢永俊, 彭霞, 黄舟, 刘瑜. 基于微博数据的北京市热点区域意象感知[J]. 地理科学进展, 2017, 36(9): 1099-1110. |
[4] | 周侃, 樊杰, 徐勇. 面向重建规划的灾后资源环境承载能力应急评价范式[J]. 地理科学进展, 2017, 36(3): 286-295. |
[5] | 尹卫霞, 余瀚, 崔淑娟, 王静爱. 暴雨洪水灾害人口损失评估方法研究进展[J]. 地理科学进展, 2016, 35(2): 148-158. |
[6] | 史培军, 袁艺. 重特大自然灾害综合评估[J]. 地理科学进展, 2014, 33(9): 1145-1151. |
[7] | 刘希林, 尚志海. 自然灾害风险主要分析方法及其适用性述评[J]. 地理科学进展, 2014, 33(11): 1486-1497. |
[8] | 尹衍雨, 王静爱, 雷永登, 易湘生. 适应自然灾害的研究方法进展[J]. 地理科学进展, 2012, 31(7): 953-962. |
[9] | 樊杰, 刘卫东, 金凤君, 刘彦随, 张文忠, 刘慧, 王成金, 王岱. 中国重大科技计划中人文—经济地理学研究进展[J]. 地理科学进展, 2011, 30(12): 1548-1554. |
[10] | 温家洪,Jianping Yan,尹占娥,孟庆洁,叶欣梁. 中国地震灾害风险管理[J]. 地理科学进展, 2010, 29(7): 771-777. |
[11] | 吴吉东1,2|李 宁1,3|胡爱军1,2|崔维佳1,2|张 鹏1,2|温玉婷1,2. 自然灾害的影响及间接经济损失评估方法[J]. 地理科学进展, 2009, 28(6): 877-885. |
[12] | 于沪宁, 江爱良. 厄尔尼诺与全球趋暖灾害骤增对农业持续发展的影响[J]. 地理科学进展, 2000, 19(3): 227-236. |
[13] | 陈亚宁, 杨思全. 自然灾害的灰色关联灾情评估模型及应用研究[J]. 地理科学进展, 1999, 18(2): 158-162. |
[14] | 钟兆站. 中国海岸带自然灾害与环境评估[J]. 地理科学进展, 1997, 16(1): 44-50. |
|