地理科学进展 ›› 2020, Vol. 39 ›› Issue (8): 1283-1295.doi: 10.18306/dlkxjz.2020.08.004
史潇1,2,3(), 王国杰3, 孙明2, 李玉涛1,4, 王博妮1,2, 沈婕5
收稿日期:
2019-06-25
修回日期:
2019-11-22
出版日期:
2020-08-28
发布日期:
2020-10-28
作者简介:
史潇(1989— ),女,江苏南京人,博士生,主要从事卫星遥感在陆表因子方面的应用研究。E-mail: 基金资助:
SHI Xiao1,2,3(), WANG Guojie3, SUN Ming2, LI Yvtao1,4, WANG Boni1,2, SHEN Jie5
Received:
2019-06-25
Revised:
2019-11-22
Online:
2020-08-28
Published:
2020-10-28
Supported by:
摘要:
地表温度在物理和生物过程中起着关键作用,也是评价地表热环境的重要指标。因此,了解地表温度时空变化对城市热岛监测及生态质量的评价具有重要意义。高分辨红外辐射探测器地表温度(HIRS LST)是目前时间尺度最长的全球逐小时地温数据集。为了解江苏省地表温度的时空分布情况并研究HIRS LST数据在江苏的适用性,论文选择江苏省1980—2009年49个站点的实测地表温度数据,利用相关系数、偏差、非偏性均方根误差等方法,对HIRS产品从多角度进行了验证。结果表明,HIRS地表温度与站点地表温度数据有较好的一致性。两者相关系数在整个区域都高于0.98,2种数据的距平相关系数在0.65~0.80之间。两者偏差和非偏性均方根误差表明,HIRS的数据在江苏北部和南部部分地区低估了地表温度,主要原因是其对高于32 ℃的地温事件发生次数存在较大程度的低估。然而,HIRS LST在很大程度上高估了在20~30 ℃之间的较高温日数。在年际变化方面,HIRS LST与观测数据在春季的相关性最高,冬季最低。趋势检验表明,2种数据在春、秋、冬3个季节均呈现出明显的增长趋势,增温趋势呈现出相似的空间变化。但是,该地区夏季的地表温度长期趋势被明显高估,HIRS数据并未反映出该地区北部大面积的降温趋势,而在其他季节的地表温度被低估。
史潇, 王国杰, 孙明, 李玉涛, 王博妮, 沈婕. 高分辨红外辐射探测器地表温度数据在江苏地区1980—2009年间适用性评估[J]. 地理科学进展, 2020, 39(8): 1283-1295.
SHI Xiao, WANG Guojie, SUN Ming, LI Yvtao, WANG Boni, SHEN Jie. Evaluation of the long-term high-resolution infrared radiation sounder land surface temperature during 1980-2009 in Jiangsu Province, China[J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1283-1295.
[1] |
Seyfried M S, Flerchinger G N, Murdock M D, et al. Long-term soil temperature database, Reynolds Creek Experimental Watershed, Idaho, United States[J]. Water Resources Research, 2001,37:2843-2846.
doi: 10.1029/2001WR000418 |
[2] | Brooks P D, McKnight D, Elder K. Carbon limitation of soil respiration under winter snowpacks: Potential feedbacks between growing season and winter carbon fluxes[J]. Global Change Biology, 2005,11:231-238. |
[3] | Bai Y, Scott T A, Chen W, et al. Long-term variation in soil temperature of the Mojave Desert, southwestern USA[J]. Climate Research, 2011,46:43-50. |
[4] | Wang Y, Chen W, Zhang J, et al. Relationship between soil temperature in may over Northwest China and the East Asian summer monsoon precipitation[J]. Acta Meteorologica Sinica, 2013,27:716-724. |
[5] | Yang K, Zhang J. Spatiotemporal characteristics of soil temperature memory in China from observation[J]. Theoretical & Applied Climatology, 2015,126(3-4):1-11. |
[6] |
Xiao J, Yu F, Zhu W, et al. Comment on "The whole-soil carbon flux in response to warming" [J]. Science, 2018, 359: eaao0218. doi: 10.1126/science.aao0218.
pmid: 29472453 |
[7] | 胡泽银, 王世杰, 白晓永, 等. 贵州省地表温度的遥感反演评价及时空分异规律[J]. 生态学杂志, 2018,37(9):2794-2807. |
[ Hu Zeyin, Wang Shijie, Bai Xiaoyong, et al. Remote sensing retrieval and spatial-temporal differentiation of land surface temperature in Guizhou Province. Chinese Journal of Ecology, 2018,37(9):2794-2807. ] | |
[8] | 林中立, 徐涵秋, 陈弘. 我国东部沿海三大城市群热岛变化及其与城市群发展的关系[J]. 环境科学研究, 2018,31(10):1695-1704. |
[ Lin Zhongli, Xu Hanqiu, Chen Hong. Urban heat island change and its relationship to the urbanization of three major urban agglomerations in China's eastern coastal region. Research of Environmental Sciences, 2018,31(10):1695-1704. ] | |
[9] |
王建凯, 王开存, 王普才. 基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J]. 遥感学报, 2007,11(3):330-339.
doi: 10.11834/jrs.20070346 |
[ Wang Jiankai, Wang Kaicun, Wang Pucai. Urban heat (or cool) island over Beijing from MODIS land surface temperature. Journal of Remote Sensing, 2007,11(3):330-339. ] | |
[10] | 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013,33(5):889-897. |
[ Xu Hanqiu. A remote sensing index for assessment of regional ecological changes. China Environmental Science, 2013,33(5):889-897. ] | |
[11] | 赵亚芳. 环太湖地区城市热岛特征的遥感资料分析与数值模拟研究[D]. 南京: 南京大学, 2015. |
[ Zhao Yafang. Remote sensing data analysis and numerical simulation of the urban heat island effects in Lake Tai Basin. Nanjing, China: Nanjing University, 2015. ] | |
[12] | 杨朝斌, 何兴元, 张树文, 等. 基于Landsat8的城市热岛效应与地表因子关系研究: 以长春市为例[J]. 干旱区资源与环境, 2016,30(12):110-115. |
[ Yang Chaobin, He Xingyuan, Zhang Shuwen, et al. Estimation of the relationship between urban heat island and land surface factors using Landsat 8 data: A case study in Changchun, China. Journal of Arid Land Resources and Environment, 2016,30(12):110-115. ] | |
[13] | 丁海勇, 李往华. 基于TVX方法的南京市城区时空格局与地表温度的研究[J]. 长江流域资源与环境, 2018,27(4):735-744. |
[ Ding Haiyong, Li Wanghua. Analysis of land use land cover temporal-spatial distribution and land surface temperature in Nanjing City using TVX Method. Resources and Environment in the Yangtze Basin, 2018,27(4):735-744. ] | |
[14] |
谢苗苗, 王仰麟, 付梅臣. 城市地表温度热岛影响因素研究进展[J]. 地理科学进展, 2011,30(1):35-41.
doi: 10.11820/dlkxjz.2011.01.004 |
[ Xie Miaomiao, Wang Yanglin, Fu Meichen. An overview and perspective about causative factors of surface urban heat island effects. Progress in Geography, 2011,30(1):35-41.] | |
[15] |
李元征, 尹科, 周宏轩, 等. 基于遥感监测的城市热岛研究进展[J]. 地理科学进展, 2016,35(9):1062-1074.
doi: 10.18306/dlkxjz.2016.09.002 |
[ Li Yuanzheng, Ying Ke, Zhou Hongxuan, et al. Progress in urban heat island monitoring by remote sensing. Progress in Geography, 2016,35(9):1062-1074. ] | |
[16] | 孟翔晨, 历华, 杜永明, 等. Landsat 8地表温度反演及验证: 以黑河流域为例[J]. 遥感学报, 2018,22(5):857-871. |
[ Meng Xiangchen, Li Hua, Du Yongming, et al. Retrieval and validation of the land surface temperature derived from Landsat 8 data: A case study of the Heihe River Basin. Journal of Remote Sensing, 2018,22(5):857-871. ] | |
[17] | Gutman G G. Vegetation indices from AVHRR: An update and future prospects[J]. Remote Sensing of Environment, 1991,35(2-3):121-136. |
[18] | Parinussa R, Jeu R D, Schalie R V D, et al. A Quasi-Global approach to improve day-time satellite surface soil moisture anomalies through the land surface temperature input[J]. Climate, 2016,4:50. doi: 10.1002/2016GL071354. |
[19] | 魏然. 多源遥感地表温度数据时空融合研究及应用[D]. 武汉: 武汉大学, 2016. |
[ Wei Ran. Researching and application of multi-source remote sensing data fusing. Wuhan, China: Wuhan University, 2016. ] | |
[20] | 杨敏, 杨贵军, 陈晓宁, 等. 基于FSDAF方法融合生成高时空分辨率地表温度[J]. 国土资源遥感, 2018,30(1):54-62. |
[ Yang Min, Yang Guijun, Chen Xiaoning, et al. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method. Remote Sensing for Land & Resources, 2018,30(1):54-62. ] | |
[21] | Coccia G, Siemann A L, Pan M, et al. Creating consistent datasets by combining remotely-sensed data and land surface model estimates through Bayesian uncertainty post-processing: The case of land surface temperature from HIRS[J]. Remote Sensing of Environment, 2015,170(1):290-305. |
[22] | 谢志清, 杜银, 曾燕, 等. 长江三角洲城市带扩展对区域温度变化的影响[J]. 地理学报, 2007,62(7):717-727. |
[ Xie Zhiqing, Du Yin, Zeng Yan, et al. Impact of urban expansion on regional temperature change in the Yangtze River Delta. Acta Geographica Sinica, 2007,62(7):717-727. ] | |
[23] | 施建成, 杜阳, 杜今阳, 等. 微波遥感地表参数反演进展[J]. 中国科学: 地球科学, 2012,42(6):814-842. |
[ Shi Jiancheng, Du Yang, Du Jinyang, et al. Advances in surface parameter retrieving for microwave remote sensing. Scientia Sinica Terrae, 2012,42(6):814-842. ] | |
[24] | 徐涵秋. 新型Landsat 8卫星影像的反射率和地表温度反演[J]. 地球物理学报, 2015,58(3):741-747. |
[ Xu Hanqiu. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite. Chinese Journal of Geophysics, 2015,58(3):741-747. ] | |
[25] | 江苏省气象局. 江苏省气候图集 [M]. 北京: 气象出版社, 2009. |
[ Jiangsu Meteorological Administration. Climatological altas of Jiangsu Province. Beijing, China: China Meteorological Press, 2009. ] | |
[26] | 中国气象局. 地面气象观测规范 [M]. 北京: 气象出版社, 2003. |
[ China Meteorological Bureau. Specifications for surface meteorological observation. Beijing, China: China Meteorological Press, 2003. ] | |
[27] | 李黄. 自动气象站实用手册 [M]. 北京: 气象出版社, 2007. |
[ Li Huang. Solutions for automatic weather station. Beijing, China: China Meteorological Press, 2007. ] | |
[28] | Ullah W, Wang G, Gao Z, et al. Comparisons of remote sensing and reanalysis soil moisture products over the Tibetan Plateau, China[J]. Cold Regions Science and Technology, 2018,146:110-121. |
[29] | 孙添, 王国杰, 娄丹, 等. 青藏高原区域多源土壤湿度数据的对比分析[J]. 江苏农业科学, 2018,46(10):285-290. |
[ Sun Tian, Wang Guojie, Lou Dan, et al. Contrastive analysis of multi-sensor soil moisture datasets of Tibetan Plateau. Jiangsu Agricultural Sciences, 2018,46(10):285-290. ] | |
[30] | Sen P K. Estimates of the regression coefficient based on Kendall's Tau[J]. Journal of the American Statistical Association, 1968,63:1379-1389. |
[31] | Guan Y, Zhang X, Zheng F, et al. Trends and variability of daily temperature extremes during 1960-2012 in the Yangtze River Basin, China[J]. Global and Planetary Change, 2015,124:79-94. |
[32] | 娄丹. 卫星遥感土壤湿度的时空分布及其对大气降水反馈作用[D]. 南京: 南京信息工程大学, 2016. |
[ Lou Dan. Spatial and temporal distribution of satellite remote sensing soil moisture and its feedback to atmospheric precipitation. Nanjing, China: Nanjing University of Information Science and Technology, 2016. ] | |
[33] | Mann H B. Nonparametric tests against trend[J]. Econometrica, 1945,13:245-259. |
[34] | Kendall M G, Gibbons J D. Rank correlation methods[J]. Biometrika, 1990,25(1):86-91. |
[35] | Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia[J]. Global and Planetary Change, 2013,100:172-182. |
[36] | Siemann A L, Coccia G, Pan M, et al. Development and analysis of a long term, global, terrestrial land surface temperature dataset based on HIRS satellite retrievals[J]. Journal of Climate, 2016,29(10): 160229122352006. doi: 10.2307/26385468. |
[37] | Dorigo W, Wagner W, Albergel C, et al, ESA CCI soil moisture for improved earth system understanding: state-of-the art and future directions[J]. Remote Sensing of Environment, 2017,203:S0034425717303061. doi: 10.1016/j.rse.2017.07.001. |
[38] | Zhang Y, Chen W, Smith S L, et al. Soil temperature in Canada during the twentieth century: Complex responses to atmospheric climate change[J]. Journal of Geophysical Research, 2005,110(D3). doi: 10.1029/2004jd004910. |
[39] | García-Suárez A M, Butler C J. Soil temperatures at Armagh Observatory, Northern Ireland, from 1904 to 2002[J]. International Journal of Climatology, 2006,26:1075-1089. |
[40] | Yeşilırmak E. Soil temperature trends in Büyük Menderes Basin, Turkey[J]. Meteorological Applications, 2014,21:859-866. |
[41] |
Araghi A, Mousavi-Baygi M, Adamowski J. Detecting soil temperature trends in Northeast Iran from 1993 to 2016[J]. Soil and Tillage Research, 2017,174:177-192.
doi: 10.1016/j.still.2017.07.010 |
[1] | 廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5): 709-715. |
[2] | 胡栩, 聂勇, 徐霞, 蒋盛, 张镱锂. 塔里木盆地南缘和田地区土地利用变化的遥感研究[J]. 地理科学进展, 2020, 39(4): 577-590. |
[3] | 史卓琳, 黄昌. 河流水情要素遥感研究进展[J]. 地理科学进展, 2020, 39(4): 670-684. |
[4] | 唐寅, 王中根, 王婉清, 黄火键, 袁勇. 适用于遥感影像的水生态空间多功能分类体系研究[J]. 地理科学进展, 2020, 39(3): 454-460. |
[5] | 姜凯斯,刘正佳,李裕瑞,王永生,王昱. 黄土丘陵沟壑区典型村域土地利用变化及对区域乡村转型发展的启示[J]. 地理科学进展, 2019, 38(9): 1305-1315. |
[6] | 段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8): 1182-1195. |
[7] | 马明国,汤旭光,韩旭军,时伟宇,宋立生,黄静. 西南岩溶地区碳循环观测与模拟研究进展和展望[J]. 地理科学进展, 2019, 38(8): 1196-1205. |
[8] | 赵彩杉, 曾刚, 张丽娟, 张学珍. 基于Google Earth和MODIS陆地数据的农林地转换对地表温度的影响——以长江中下游及毗邻地区为例[J]. 地理科学进展, 2019, 38(5): 698-708. |
[9] | 陈颖彪, 郑子豪, 吴志峰, 千庆兰. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展, 2019, 38(2): 205-223. |
[10] | 吴其慧, 李畅游, 孙标, 史小红, 赵胜男, 韩知明. 1986—2017年呼伦湖湖冰物候特征变化[J]. 地理科学进展, 2019, 38(12): 1933-1943. |
[11] | 高静, 龚健, 李靖业. “源-汇”景观格局的热岛效应研究——以武汉市为例[J]. 地理科学进展, 2019, 38(11): 1770-1782. |
[12] | 张洪源, 吴艳红, 刘衍君, 郭立男. 近20年青海湖水量变化遥感分析[J]. 地理科学进展, 2018, 37(6): 823-832. |
[13] | 赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018, 37(2): 198-213. |
[14] | 张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37(2): 214-223. |
[15] | 林珲, 张鸿生, 林殷怡, 魏姗, 吴志峰. 基于城市不透水面—人口关联的粤港澳大湾区人口密度时空分异规律与特征[J]. 地理科学进展, 2018, 37(12): 1644-1652. |
|