地理科学进展 ›› 2020, Vol. 39 ›› Issue (7): 1160-1171.doi: 10.18306/dlkxjz.2020.07.009
杜欣儒1,2(), 路紫1,2,*(
), 李仁杰1,2, 董雅晴1,2, 高伟1,2
收稿日期:
2019-05-30
修回日期:
2019-09-24
出版日期:
2020-07-28
发布日期:
2020-09-28
通讯作者:
路紫
作者简介:
杜欣儒(1989— ),女,山西晋中人,博士生,主要从事航空地理研究。E-mail: 基金资助:
DU Xinru1,2(), LU Zi1,2,*(
), LI Renjie1,2, DONG Yaqing1,2, GAO Wei1,2
Received:
2019-05-30
Revised:
2019-09-24
Online:
2020-07-28
Published:
2020-09-28
Contact:
LU Zi
Supported by:
摘要:
论文借鉴欧洲控制研究中心以机型为基本单元的延误成本估算模型(简称EC估算模型)及其相关算法,以EC估算模型为基础,补充机型配置比和引入航班执行阶段作为影响参数,估算了24 h中国枢纽机场单位时长延误成本和时间延误总成本,进行了时间延误成本的航线影响分析及中美比较,得到如下结论:① 区域枢纽机场时间延误成本普遍低于复合枢纽机场,但前者中机型单位时长延误成本和登机口成本均高于后者,从中可透视出其分别与中国航线网络中心集聚、航空地理市场(机型配置)需求和航线网络模式应用的密切相关;枢纽机场空中维持成本在时间延误总成本中占比最大,说明中国空中廊道设置存在缺陷。② 枢纽机场间(航线)以及枢纽机场与非枢纽机场之间(航线)时间延误总成本的差异深受航线属性所影响,其根本又在于航空地理市场(机型配置)需求以及空中廊道参与机场位置。③ 中美枢纽机场和枢纽机场间(航线)时间延误成本均有较大差异,主要表现为中国空中维持成本远高于美国,这是由空中廊道特征路径宽度和航迹交叉点数量2个因素造成的。
杜欣儒, 路紫, 李仁杰, 董雅晴, 高伟. 中国枢纽机场时间延误成本估算与航线影响分析及中美比较[J]. 地理科学进展, 2020, 39(7): 1160-1171.
DU Xinru, LU Zi, LI Renjie, DONG Yaqing, GAO Wei. Estimation of time delay cost of hub airports in China, air routes effect and comparison with the United States[J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1160-1171.
表1
中国枢纽机场6种机型配置比及3个航班执行阶段单位时长延误成本"
机型/座位容量 (成本标准值/(€/min))* | A319/122 (0.6/2.6/7.1) | A320/158 (0.6/2.6/7.7) | A321/185 (0.7/3.0/9.5) | B737-800/162 (0.5/2.9/7.8) | A333/370 (1.8/4.5/27.6) | B777-300ER/300 (0.6/10.6/14.2) | |
---|---|---|---|---|---|---|---|
PEK | 配置比/% 延误成本/(€/min) | 2.93 0.12/0.47/1.26 | 17.59 0.70/2.81/8.09 | 23.28 0.93/4.19/13.27 | 23.62 0.71/4.02/11.10 | 20.34 2.24/13.02/33.76 | 12.24 0.49/3.30/10.40 |
SHA | 配置比/% 延误成本/(€/min) | 1.09 0.04/0.17/0.47 | 21.68 0.87/3.47/9.98 | 21.68 0.87/3.90/12.36 | 39.78 1.19/6.76/18.70 | 12.48 1.37/7.99/20.72 | 3.28 0.13/0.88/2.78 |
PVG | 配置比/% 延误成本/(€/min) | 3.47 0.14/0.55/1.49 | 30.11 1.20/4.82/13.85 | 24.09 0.96/4.34/13.73 | 25.36 0.76/4.31/11.92 | 6.20 0.68/3.97/10.30 | 10.77 0.43/2.91/9.15 |
CAN | 配置比/% 延误成本/(€/min) | 6.13 0.25/0.98/2.64 | 23.24 (0.93/3.72/10.69 | 15.63 0.63/2.81/8.91 | 43.03 1.29/7.31/20.22 | 7.12 0.78/4.56/11.82 | 4.85 0.19/1.31/4.12 |
CKG | 配置比/% 延误成本/(€/min) | 19.12 0.76/3.06/8.22 | 51.39 2.06/8.22/23.64 | 13.94 0.56/2.51/7.95 | 13.94 0.42/2.37/6.55 | 1.2 0.13/0.76/1.98 | 0.40 0.02/0.11/0.34 |
CTU | 配置比/% 延误成本/(€/min) | 14.77 0.59/2.36/6.35 | 33.86 1.35/5.42/15.57 | 24.58 0.98/4.42/14.01 | 19.87 0.60/3.38/9.34 | 6.67 0.73/4.27/11.07 | 0.26 0.01/0.07/0.22 |
WUH | 配置比/% 延误成本/(€/min) | 4.55 0.18/0.73/1.95 | 21.21 0.85/3.39/9.76 | 6.44 0.26/1.16/3.67 | 66.29 1.99/11.27/31.16 | 0.76 0.08/0.48/1.26 | 0.76 0.03/0.20/0.64 |
CGO | 配置比/% 延误成本/(€/min) | 2.16 0.09/0.35/0.93 | 23.74 0.95/3.80/10.92 | 3.24 0.13/0.58/1.85 | 70.50 2.12/11.99/33.14 | 0.36 0.04/0.23/0.60 | 0 0/0/0 |
SHE | 配置比/% 延误成本/(€/min) | 4.33 0.17/0.69/1.86 | 47.99 1.92/7.86/22.07 | 14.86 0.59/2.67/8.47 | 31.58 0.95/5.37/14.84 | 0.62 0.07/0.40/1.03 | 0.62 0.02/0.17/0.53 |
XIY | 配置比/% 延误成本/(€/min) | 10.03 0.40/1.61/4.31 | 38.19 1.53/6.11/17.57 | 15.86 0.63/2.85/9.04 | 34.95 1.05/5.94/16.43 | 0.97 0.11/0.62/1.61 | 0 0/0/0 |
KMG | 配置比/% 延误成本/(€/min) | 5.99 0.24/0.96/2.58 | 26.65 1.07/4.26/12.26 | 3.31 0.13/0.60/1.88 | 62.40 1.87/10.61/29.33 | 1.65 0.18/1.06/2.74 | 0 0/0/0 |
URC | 配置比/% 延误成本/(€/min) | 19.71 0.79/3.16/8.50 | 24.42 0.98/3.91/11.23 | 15.12 0.60/2.72/8.62 | 37.21 1.12/6.33/17.49 | 2.33 0.26/1.49/3.86 | 1.16 0.05/0.31/0.99 |
表2
中美复合枢纽机场6种机型3个航班执行阶段单位时长延误成本和首位联系强度比较"
比较内容 | 美国 | 中国 | ||||||
---|---|---|---|---|---|---|---|---|
机型/机场 | 单位时长延误成本/(€/min) | 机型/机场 | 单位时长延误成本/(€/min) | |||||
登机口 | 滑行 | 空中维持 | 登机口 | 滑行 | 空中维持 | |||
机型 | A319 | 0.6 | 2.6 | 7.1 | A319 | 0.3 | 1.3 | 3.4 |
A320 | 0.6 | 2.6 | 7.7 | A320 | 1.2 | 4.8 | 13.8 | |
A321 | 0.7 | 3.0 | 9.5 | A321 | 0.6 | 3.2 | 8.4 | |
B737-800 | 0.5 | 2.9 | 7.9 | B737-800 | 1.2 | 6.6 | 18.4 | |
A333 | 1.9 | 4.62 | 27.8 | A333 | 0.6 | 2.8 | 8.7 | |
B777-300ER | 0.6 | 10.6 | 14.3 | B777-300ER | 0.1 | 0.8 | 14.3 | |
复合枢纽机场 | ATL | 179.6 | 176.8 | 55.9 | PEK | 71.9 | 280.1 | 424.7 |
PHL | 117.0 | 77.4 | 66.8 | CAN | 77.2 | 253.8 | 357.4 | |
JFK | 201.6 | 98.1 | 88.6 | SHA | 66.9 | 146.2 | 291.4 | |
ORD | 118.4 | 132.4 | 104.3 | PVG | 76.3 | 112.9 | 310.5 | |
机场首位联系强度 | ATL | CLT(19)、JFK(11)、PHL(21)、DFW(21)、ORD(25)、DEN(20)/16.58%* | PEK | SHA(59)、PVG(20)、CAN(42)、WHU(15)、CTU(33)、XIY(43)、SHE(23)、URC(18)/32.4% | ||||
PHL | JFK(7)、ORD(16)、DEN(10)、LAS(6)、LAX(9)、SFO(8)/11.56% | CAN | SHA(60)、PVG(25)、WUH(23)、CTU(60)、KMG(18)、CKG(25)、URC(21)、XIY(2)、SHE(12)/25.6% | |||||
JFK | DFW(6)、ORD(9)、ATL(10)、LAX(37)/7.72% | SHA | CTU(38)、KMG(15)、CGO(4)、WUH(79)、CKG(18)、SHE(43)、URC(16)/14.72% | |||||
ORD | CLT(15)、DFW(26)、ORD(2)、PHX(12)/7.51% | PVG | KMG(15)、WUH(21)、XIY(36)、URC(3)/6.17% |
表3
中美前10位枢纽机场间(航线)3个航班执行阶段时间延误总成本比较"
美国 | 中国 | ||||||||
---|---|---|---|---|---|---|---|---|---|
航线 | 时间延误成本 | 航线 | 时间延误成本 | ||||||
登机口 | 滑行 | 空中维持 | 总计 | 登机口 | 滑行 | 空中维持 | 总计 | ||
DEN-CLT | 14499 | 71972 | 76086 | 162557 | PEK-KMG | 16547 | 62979 | 169572 | 249098 |
LAX-JFK | 43668 | 167542 | 156062 | 267272 | PEK-SHA | 29592 | 34487 | 173140 | 337219 |
SFO-DEN | 22719 | 52593 | 31354 | 106666 | PEK-CAN | 17641 | 68828 | 241567 | 328036 |
ATL-DFW | 50207 | 70232 | 27704 | 148143 | PEK-CTU | 24352 | 59329 | 248979 | 332660 |
CLT-ORD | 30354 | 111835 | 187679 | 229868 | PEK-XIY | 47983 | 41140 | 133639 | 222762 |
JFK-CLT | 23588 | 265200 | 45255 | 334043 | CTU-CAN | 21095 | 29069 | 201833 | 251997 |
JFK-SFO | 27699 | 125408 | 156253 | 309360 | CTU-SHA | 40611 | 56130 | 145523 | 242264 |
ATL-DEN | 55128 | 145523 | 6169 | 206820 | CTU-WUH | 29554 | 55115 | 75821 | 160490 |
ATL-PHL | 35457 | 174688 | 35380 | 245525 | KMG-XIY | 11007 | 14764 | 181690 | 207461 |
LAX-ORD | 11536 | 11823 | 17632 | 130991 | CAN-SHA | 28323 | 44707 | 91317 | 164347 |
[1] | DeJonge M K, Syblon W H. Application of cost index to fleet hub operation [R]. 1984 American Control Conference. San Diego, USA, 1984: 179-183. doi: 10.23919/ACC.1984. 4788373. |
[2] |
Burrows G, Brown C A, Thom T W, et al. Real-time cost management of aircraft operations[J]. Management Accounting Research, 2001,12(3):281-298.
doi: 10.1006/mare.2001.0162 |
[3] |
Cook A, Tanner G, Williams V, et al. Dynamic cost indexing-managing airline delay costs[J]. Journal of Air Transport Management, 2009,15(1):26-35.
doi: 10.1016/j.jairtraman.2008.07.001 |
[4] |
Aktürk M S, Atamtürk A, Gürel S. Aircraft rescheduling with cruise speed control[J]. Operations Research, 2014,62(4):829-845.
doi: 10.1287/opre.2014.1279 |
[5] |
Serhan D, Lee H, Yoon S W. Minimizing airline and passenger delay cost in airport surface and terminal airspace operations[J]. Journal of Air Transport Management, 2018,73(8):120-133.
doi: 10.1016/j.jairtraman.2018.07.001 |
[6] |
Yan C, Vaze V, Barnhart C. Airline-driven ground delay programs: A benefits assessment[J]. Transportation Research Part C: Emerging Technologies, 2018,89(4):268-288.
doi: 10.1016/j.trc.2018.02.013 |
[7] |
Murça M C R. Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions[J]. Journal of Air Transport Management, 2018,71(6):97-107.
doi: 10.1016/j.jairtraman.2018.06.009 |
[8] |
Mohammadian I, Abareshi A, Abbasi B, et al. Airline capacity decisions under supply-demand equilibrium of Australia's domestic aviation market[J]. Transportation Research Part A: Policy and Practice, 2019,119(1):108-121.
doi: 10.1016/j.tra.2018.10.039 |
[9] |
Wang C, Wang X Y. Airport congestion delays and airline networks[J]. Transportation Research Part E: Logistics and Transportation Review, 2019,122(2):328-349.
doi: 10.1016/j.tre.2018.12.008 |
[10] | 杨秀云, 王全良, 何建宝. 航班延误问题的研究动态, 演化趋势及启示[J]. 经济经纬, 2013,30(4):76-82. |
[ Yang Xiuyun, Wang Quanliang, He Jianbao. A dynamic research on commentary of flight felay and evolutionary trends. Economic Survey, 2013,30(4):76-82. ] | |
[11] |
Pérez-Rodríguez J V, Pérez-Sánchez J M, Gómez-Déniz E. Modelling the asymmetric probabilistic delay of aircraft arrival[J]. Journal of Air Transport Management, 2017,62(5):90-98.
doi: 10.1016/j.jairtraman.2017.03.001 |
[12] |
Ferguson J, Kara A Q, Hoffman K, et al. Estimating domestic US airline cost of delay based on European model[J]. Transportation Research Part C: Emerging Technologies, 2013,33(8):311-323.
doi: 10.1016/j.trc.2011.10.003 |
[13] |
Edwards H A, Dixon-Hardy D, Wadud Z. Aircraft cost index and the future of carbon emissions from air travel[J]. Applied Energy, 2016,164(4):553-562.
doi: 10.1016/j.apenergy.2015.11.058 |
[14] |
Picard P M, Tampieri A, Wan X. Airport capacity and inefficiency in slot allocation[J]. International Journal of Industrial Organization, 2019,62(1):330-357.
doi: 10.1016/j.ijindorg.2017.10.003 |
[15] |
Wu C L, Law K. Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model[J]. Transportation Research Part E: Logistics and Transportation Review, 2019,122(2):62-77.
doi: 10.1016/j.tre.2018.11.004 |
[16] |
Zou B, Hansen M. Impact of operational performance on air carrier cost structure: Evidence from US airlines[J]. Transportation Research Part E: Logistics and Transportation Review, 2012,48(5):1032-1048.
doi: 10.1016/j.tre.2012.03.006 |
[17] |
Aydemir R, Seymour D T, Buyukdagli A, et al. An empirical analysis of delays in the Turkish Airlines network[J]. Journal of Air Transport Management, 2017,65(9):76-87.
doi: 10.1016/j.jairtraman.2017.09.008 |
[18] |
Santos G, Robin M. Determinants of delays at European airports[J]. Transportation Research Part B: Methodological, 2010,44(3):392-403.
doi: 10.1016/j.trb.2009.10.007 |
[19] | Wilken D, Berster P, Gelhausen M C. New empirical evidence on airport capacity utilisation: Relationships between hourly and annual air traffic volumes[J]. Research in Transportation Business & Management, 2011,1(1):118-127. |
[20] |
Xiao Y B, Fu X W, Oum T H, et al. Modeling airport capacity choice with real options[J]. Transportation Research Part B: Methodological, 2017,100(6):93-114.
doi: 10.1016/j.trb.2017.02.001 |
[21] | 莫辉辉, 金凤君, 刘毅, 等. 机场体系中心性的网络分析方法与实证[J]. 地理科学, 2010,30(2):204-212. |
[ Mo Huihui, Jin Fengjun, Liu Yi, et al. Network analysis on centrality of airport system. Scientia Georaphica Sinica, 2010,30(2):204-212. ] | |
[22] |
丁金学, 金凤君, 王成金, 等. 中国交通枢纽空间布局的评价、优化与模拟[J]. 地理学报, 2011,66(4):504-514.
doi: 10.11821/xb201104007 |
[ Ding Jinxue, Jin Fengjun, Wang Chengjin, et al. Evaluation, optimization and simulation of the spatial layout of transport hubs in China. Acta Geographica Sinica, 2011,66(4):504-514. ] | |
[23] |
曹小曙, 廖望. 全球多机场区域空间格局与类型划分[J]. 地理科学进展, 2018,37(11):1473-1484.
doi: 10.18306/dlkxjz.2018.11.004 |
[ Cao Xiaoshu, Liao Wang. Spatial pattern and classification of the worldwide multi-airport regions. Progress in Geography, 2018,37(11):1473-1484. ] | |
[24] |
王姣娥, 景悦. 中国城市网络等级结构特征及组织模式: 基于铁路和航空流的比较[J]. 地理学报, 2017,72(8):1508-1519.
doi: 10.11821/dlxb201708013 |
[ Wang Jiao'e, Jing Yue. Comparison of spatial structure and organization mode of inter-city networks from the perspective of railway and air passenger flow. Acta Geographica Sinica, 2017,72(8):1508-1519.] | |
[25] | 乐美龙, 李星灿, 高金敏. 机场到达时刻数量决策随机模型[J]. 系统工程理论与实践, 2017,37(11):2948-2954. |
[ Le Meilong, Li Xingcan, Gao Jinmin. Stochastic model of determining airport arrival slots number. Systerms Engineering: Theory & Practice, 2017,37(11):2948-2954. ] | |
[26] |
Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010,24(1):107-127.
doi: 10.1080/13658810802443457 |
[27] |
Pels E, Nijkamp P, Rietveld P. Inefficiencies and scale economies of European airport operations[J]. Transportation Research Part E: Logistics and Transportation Review, 2003,39(5):341-361.
doi: 10.1016/S1366-5545(03)00016-4 |
[28] |
Yu M M. Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors[J]. Journal of Air Transport Management, 2004,10(5):295-303.
doi: 10.1016/j.jairtraman.2004.04.001 |
[29] |
Merkert R, Mangia L. Efficiency of Italian and Norwegian airports: A matter of management or of the level of competition in remote regions?[J]. Transportation Research Part A: Policy and Practice, 2014,62(4):30-38.
doi: 10.1016/j.tra.2014.02.007 |
[30] |
Li L F, Wang J F, Cao Z D, et al. An information-fusion method to identify pattern of spatial heterogeneity for improving the accuracy of estimation[J]. Stochastic Environmental Research and Risk Assessment, 2008,22(6):689-704.
doi: 10.1007/s00477-007-0179-1 |
[31] |
Pavlyuk D. Implication of spatial heterogeneity for airports' efficiency estimation[J]. Research in Transportation Economics, 2016,56(2):15-24.
doi: 10.1016/j.retrec.2016.07.002 |
[32] |
Ren P, Pavlyuk L. Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks[J]. Journal of Air Transport Management, 2018,67(2):181-196.
doi: 10.1016/j.jairtraman.2017.12.005 |
[33] |
Ha H K, Wan Y, Yoshida Y, et al. Airline market structure and airport efficiency: Evidence from major Northeast Asian airports[J]. Journal of Air Transport Management, 2013,33(8):32-42.
doi: 10.1016/j.jairtraman.2013.06.008 |
[34] |
Tsekeris T. Greek airports: Efficiency measurement and analysis of determinants[J]. Journal of Air Transport Management, 2011,17(2):140-142.
doi: 10.1016/j.jairtraman.2010.06.002 |
[35] |
Cook A, Blom H A P, Lillo F, et al. Applying complexity science to air traffic management[J]. Journal of Air Transport Management, 2015,42(1):149-158.
doi: 10.1016/j.jairtraman.2014.09.011 |
[36] | Vespignani A. Modelling dynamical processes in complex socio-technical systems[J]. Nature Physics, 2012,8(1):32-39. |
[37] |
Murça M C R, Hansman R J, Li L, et al. Flight trajectory data analytics for characterization of air traffic flows: A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo[J]. Transportation Research Part C: Emerging Technologies, 2018,97(12):324-347.
doi: 10.1016/j.trc.2018.10.021 |
[38] |
董雅晴, 路紫, 刘媛, 等. 中国空中廊道划设与时空拥堵识别及其航线流量影响[J]. 地理学报, 2018,73(10):2001-2013.
doi: 10.11821/dlxb201810013 |
[ Dong Yaqing, Lu Zi, Liu Yuan, et al. The design of China's corridors-in-the-sky and the influence of air routes traffic on the identification of space-time congestion. Acta Geographica Sinica, 2018,73(10):2001-2013. ] | |
[39] |
Bush H, Starkie D. Competitive drivers towards improved airport/airline relationships[J]. Journal of Air Transport Management, 2014,41(8):45-49.
doi: 10.1016/j.jairtraman.2013.09.002 |
[40] |
Starkie D. European airports and airlines: Evolving relationships and the regulatory implications[J]. Journal of Air Transport Management, 2012,21(4):40-49.
doi: 10.1016/j.jairtraman.2011.12.016 |
[41] |
Jacquillat A, Odoni A R. A roadmap toward airport demand and capacity management[J]. Transportation Research Part A: Policy and Practice, 2018,114(8):168-185.
doi: 10.1016/j.tra.2017.09.027 |
[42] |
路紫, 杜欣儒. 国外空域资源开发利用的理论基础、方法论变革与实践[J]. 地球科学进展, 2015,30(11):1260-1267.
doi: 10.11867/j.issn.1001-8166.2015.11.1260 |
[ Lu Zi, Du Xinru. The theoretical sources, innovation of methodologies and practice of exploitation and utilization of airspace in western countries. Advances in Earth Science, 2015,30(11):1260-1267. ] | |
[43] |
王姣娥, 莫辉辉. 航空运输地理学研究进展与展望[J]. 地理科学进展, 2011,30(6):670-680.
doi: 10.11820/dlkxjz.2011.06.004 |
[ Wang Jiao'e, Mo Huihui. Geography of air transportation: Retrospect & prospect. Progress in Geography, 2011,30(6):670-680. ] | |
[44] |
叶倩, 吴殿廷, 戴特奇, 等. 中美航空客运网络层次结构和地域系统对比分析[J]. 地理研究, 2013,32(6):1084-1094.
doi: 10.11821/yj2013060012 |
[ Ye Qian, Wu Dianting, Dai Teqi, et al. A comparative analysis of hierarchy and regional system of domestic air passenger transport network between China and USA. Geographical Research, 2013,32(6):1084-1094. ] | |
[45] |
徐敏政, 许珺, 陈娱. 基于最多叶子生成树的中国航空网络轴辐结构构建[J]. 地理学报, 2014,69(12):1847-1857.
doi: 10.11821/dlxb201412010 |
[ Xu Minzheng, Xu Jun, Chen Yu. Construction of Chinese aviation hub-spoke structure based on maximum leaf spanning tree. Acta Geographica Sinica, 2014,69(12):1847-1857. ] | |
[46] | 吴文婕, 张小雷, 杨兆萍, 等. 乌鲁木齐国际机场时刻资源与航线布局的时空网络模式分析[J]. 干旱区地理, 2015,38(6):1290-1299. |
[ Wu Wenjie, Zhang Xiaolei, Yang Zhaoping, et al. Temporal-spatial network analysis on time resource and airline layout of Urumqi international airport. Arid Land Geography, 2015,38(6):1290-1299. ] | |
[47] |
Mandel B N, Schnell O. An 'Open Sky' Scenario for Hamburg Airport and Germany[J]. Journal of Air Transport Management, 2001,7(1):9-24.
doi: 10.1016/S0969-6997(00)00023-5 |
[1] | 陈卓, 梁宜, 金凤君. 基于陆路综合交通系统的中国城市网络通达性模拟及其对区域发展格局的影响[J]. 地理科学进展, 2021, 40(2): 183-193. |
[2] | 姜宛贝, 刘卫东, 刘志高, 韩梦瑶. 中国化石能源燃烧碳排放强度非均衡性及其演变的驱动力分析[J]. 地理科学进展, 2020, 39(9): 1425-1435. |
[3] | 胡国建, 陆玉麒. 基于企业视角的城市网络研究进展、思考和展望[J]. 地理科学进展, 2020, 39(9): 1587-1596. |
[4] | 朱晟君, 黄永源, 胡晓辉. 多尺度视角下的产业价值链与空间升级研究框架与展望[J]. 地理科学进展, 2020, 39(8): 1367-1384. |
[5] | 周国华, 张汝娇, 贺艳华, 戴柳燕, 张丽. 论乡村聚落优化与乡村相对贫困治理[J]. 地理科学进展, 2020, 39(6): 902-912. |
[6] | 谭雪兰, 蒋凌霄, 王振凯, 安悦, 陈敏, 任辉. 地理学视角下的中国乡村贫困——源起、进展与展望[J]. 地理科学进展, 2020, 39(6): 913-923. |
[7] | 刘小鹏, 程静, 赵小勇, 苗红, 魏静宜, 曾端, 马存霞. 中国可持续减贫的发展地理学研究[J]. 地理科学进展, 2020, 39(6): 892-901. |
[8] | 孙娜, 张梅青. 基于高铁流的中国城市网络结构特征演变研究[J]. 地理科学进展, 2020, 39(5): 727-737. |
[9] | 杜德林, 王姣娥, 王祎. 中国三大航空公司市场竞争格局及演化研究[J]. 地理科学进展, 2020, 39(3): 367-376. |
[10] | 周美君, 李飞, 邵佳琪, 杨海娟. 气候变化背景下中国玉米生产潜力变化特征[J]. 地理科学进展, 2020, 39(3): 443-453. |
[11] | 孙才志, 阎晓东. 基于MRIO的中国省区和产业灰水足迹测算及转移分析[J]. 地理科学进展, 2020, 39(2): 207-218. |
[12] | 韩炜, 蔡建明. 乡村非农产业时空格局及其对居民收入的影响[J]. 地理科学进展, 2020, 39(2): 219-230. |
[13] | 李晓丽, 宋伟轩, 吴威, 马雨竹. 基于跟踪调查的北京城市空间感知研究——以中国科学院大学硕士研究生为例[J]. 地理科学进展, 2020, 39(2): 276-285. |
[14] | 邹利林, 刘彦随, 王永生. 中国土地利用冲突研究进展[J]. 地理科学进展, 2020, 39(2): 298-309. |
[15] | 唐承辉, 马学广. 中国城市网络化物流联系空间格局与结构——基于快递网点数据的研究[J]. 地理科学进展, 2020, 39(11): 1809-1821. |
|