地理科学进展 ›› 2020, Vol. 39 ›› Issue (4): 670-684.doi: 10.18306/dlkxjz.2020.04.014

• 研究综述 • 上一篇    下一篇

河流水情要素遥感研究进展

史卓琳, 黄昌*()   

  1. 西北大学,陕西省地表系统与环境承载力重点实验室,西安 710127
  • 收稿日期:2019-03-18 修回日期:2019-09-23 出版日期:2020-04-28 发布日期:2020-06-28
  • 通讯作者: 黄昌
  • 作者简介:史卓琳(1996— ),女,陕西铜川人,硕士生,主要从事水文遥感研究。E-mail: shizl@stumail.nwu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFC1502501);国家重点研发计划项目(2017YFC0404302);国家自然科学基金项目(41501460)

Recent advances in remote sensing of river characteristics

SHI Zhuolin, HUANG Chang*()   

  1. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an 710127, China
  • Received:2019-03-18 Revised:2019-09-23 Online:2020-04-28 Published:2020-06-28
  • Contact: HUANG Chang
  • Supported by:
    National Key Research and Development Program of China(2017YFC1502501);National Key Research and Development Program of China(2017YFC0404302);National Natural Science Foundation of China(41501460)

摘要:

河流是促进地貌形成和演化的重要因素,也是地球上最重要的淡水资源之一。河流的水体范围、水位/水深、流量、水质和冰情等水情要素在水资源动态监测和水文生态环境保护等研究中具有至关重要的作用。通过水文站观测河流可获得站点上的水情信息,但该方式在财力、物力方面均耗费巨大。同时,对于日益增长的河流水情信息需求,迫切需要一种能够快捷、准确补充河流实测数据的方法。遥感凭借全方位、多时相的对地观测能力极大地提升了河流水情信息获取的效率,已广泛应用于多尺度水情监测、无资料流域水文模拟等多个方面,取得了丰硕的研究成果。因此,有必要对近年来遥感应用于河流水情要素反演所取得的进展进行归纳、总结和展望,以期进一步促进遥感数据和方法在该领域的应用。论文以“河流水情要素遥感”为主题,系统归纳了河流水体遥感提取的常用传感器及方法、水位/水深遥感反演方法、河道流量遥感估算、河流水质及河冰遥感监测的研究进展,详细归纳了利用光学/微波遥感等不同类型的遥感手段获取河流水体范围、水位、水深的优势与不足,总结得出了河流水情要素遥感研究的数据、方法及应用方面的主要结论:① 新型遥感数据在河流水情要素监测中的应用愈加广泛,在空间分辨率、时间分辨率或光谱分辨率等方面不断突破,进一步丰富了河流水情要素研究的数据来源;② 多数中低空间分辨率光学影像依旧面临混合像元影响水体提取精度的问题,合成孔径雷达影像也存在数据处理算法开发难度大的问题,细小河流及非开阔水体的提取方法仍需探索;③ 大数据和云计算技术的发展为实现大尺度、长时序的河流水情要素高时空分辨率遥感监测提供了高效手段。

关键词: 水体, 水位/水深, 河道流量, 水质, 河冰, 光学/微波遥感

Abstract:

River is one of the most significant factors in driving the formation and evolution of landforms as well as one of the most important freshwater resources on the Earth. River characteristics, including water extent, water level/water depth, river discharge, water quality, and ice coverage, are vital to the dynamic monitoring of water resources and protection of eco-hydrological systems. Traditional methods of acquiring river characteristics are to use in situ data that were collected on hydrological gauges, which costs large amount of financial and material resources. It is urgent to develop a way of supplementing in situ data of rivers quickly and accurately for the increasing demand of river information. With the ability of omnidirectional and multi-temporal Earth observation, remote sensing has greatly improved the efficiency of acquiring river characteristics. It has been applied broadly in multi-scale river monitoring and hydrological simulation in ungauged basins. Therefore, it is necessary to summarize recent progresses in the field of remote sensing based river characteristics inversion, in order to further promote the application of remote sensing data and methods in this field. This article, therefore, focusing on remote sensing of river characteristics, summarizes recent progresses systematically on the extraction of water extent, inversion of water level/water depth, estimation of river discharge, and monitoring of water quality and ice coverage. Advantages and disadvantages of applying optical and microwave remote sensors for obtaining water extent and water level/depth are discussed in detail. The advanced data, specific methods, and related emerging technologies in this field are discussed and the following conclusions are made: 1) Newly available remotely sensed data have been making creative breakthroughs in spatial resolution, temporal resolution, and spectral resolution, which dramatically enrich data sources for river studies. 2) Most optical images still face the challenge of mixed pixels, while the application of SAR images is suffering from difficulties in developing complex processing algorithms. Meanwhile, accurate extractions of narrow and non-open waters need further research in the future. 3) The development of big data and cloud computing technologies provide excellent means for monitoring river characteristics at large spatial scales and long temporal scales, with both high spatial and high temporal resolutions.

Key words: water extent, water level/water depth, river discharge, water quality, ice coverage, optical/microwave remote sensors