地理科学进展 ›› 2019, Vol. 38 ›› Issue (7): 1045-1055.doi: 10.18306/dlkxjz.2019.07.009
收稿日期:
2018-09-05
修回日期:
2019-03-22
出版日期:
2019-07-28
发布日期:
2019-07-28
通讯作者:
葛全胜
作者简介:
张湜溪(1990— ),女,博士后,研究领域为环境分析化学。E-mail: <email>zhangsx@igsnrr.ac.cn</email>
基金资助:
Shixi ZHANG1(), Junhu DAI1,2, Quansheng GE1,2,*(
)
Received:
2018-09-05
Revised:
2019-03-22
Online:
2019-07-28
Published:
2019-07-28
Contact:
Quansheng GE
Supported by:
摘要:
植物物候对气候变化的响应非常敏感,是指示全球变化对生态系统影响的重要证据。其中植物花期变化影响植物繁殖与进化,具有重要意义。大量研究表明,随着全球气候变暖,北半球植物始花期普遍提前。而关于气候变暖对植物始花期影响的内在机理并没有明确解释。植物激素是植物体内对植物开花等生理活动有显著调控作用的有机物,可对环境刺激作出响应并直接参与调控植物始花期,导致始花期的提前或延后。对植物激素在植物中表达与变化的精确测定有助于了解植物始花期对气候变化响应的内在机理。论文综述了植物激素对植物开花时间的调控作用以及目前植物激素最先进的检测方法,探讨了植物激素及相关代谢产物在植物体内的含量变化对植物始花期的影响;提出通过植物激素研究植物始花期对气候变化响应的激素调控机理,为探索植物物候对气候变化响应提供新的研究思路与手段。
张湜溪, 戴君虎, 葛全胜. 植物始花期对气候变化响应的激素调控机理研究进展[J]. 地理科学进展, 2019, 38(7): 1045-1055.
Shixi ZHANG, Junhu DAI, Quansheng GE. Progress of responses of first flowering date to climate change and the correlations of plant hormone regulation[J]. PROGRESS IN GEOGRAPHY, 2019, 38(7): 1045-1055.
图3
多种植物激素调控植物开花信号传导通路注:改自Martinez et al, 2004。脱落酸(ABA)通过激活Abscisic Acid-insensitive Mutant 5 (ABI5)基因激活Flowering Locus T (FT)基因表达,从而促进开花;茉莉酸(JA)通过Coronatine Insensitive 1 (COI1)基因抑制开花;DELLA蛋白通过促进FLC的H3K27me3标记调控FT和SOC1的表达来抑制开花,乙烯(ET)、生长素(IAA)、赤霉素(GA)通过DELLA蛋白调控开花;SA抑制SIZ1(SUMO E3 ligase)的表达,以促进FLD的表达,FLD的高表达会抑制FLC表达,促进开花。"
[1] | 刘翠梅, 李冬梅, 郭超, 等. 2017. 植物激素的挑战与方法学进展[J]. 中国科学(化学), 47(12): 1355-1364. |
[Liu C M, Li D M, Guo C, et al.2017. Challenges and recent advances in the determination of plant hormones. Scientia Sinica Chimica, 47(12): 1355-1364. ] | |
[2] | 陶泽兴, 仲舒颖, 葛全胜, 等. 2017. 1963-2012 年中国主要木本植物花期长度时空变化[J]. 地理学报, 72(1): 53-63. |
[Tao Z X, Zhong S Y, Ge Q S.2017. Spatiotemporal variations in flowering duration of woody plants in China from 1963 to 2012. Acta Geographica Sinica, 72(1): 53-63. ] | |
[3] |
周艳明, 忻雪. 2010. 高效液相色谱法测定果蔬中7 种植物激素的残留量[J]. 食品科学, 31(18): 301-304.
doi: 10.7506/spkx1002-6630-201018071 |
[Zhou Y, Xin X.2010. Determination of plant hormone residues in vegetables and fruits by high performance liquid chromatography. Food Science, 31(18): 301-304. ]
doi: 10.7506/spkx1002-6630-201018071 |
|
[4] | 竺可桢, 宛敏渭. 1973. 物候学 [M]. 北京: 科学出版社: 1-173. |
[Zhu K Z, Wan M W.1973. Phenology. Beijing,China: Science Press: 1-173. ] | |
[5] |
Achard P, Baghour M, Chapple A, et al.2007. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation ot floral meristem-identity genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(15): 6484-6489.
doi: 10.1073/pnas.0610717104 |
[6] |
Bai Y, Du F, Bai Y, et al.2010. Determination strategies of phytohormones: Recent advances[J]. Analytical Methods, 2(12): 1867-1873.
doi: 10.1039/c0ay00471e |
[7] | Cai W J, Ye T T, Wang Q, et al.2016. A rapid approach to investigate spatiotemporal distribution of phytohormones in rice[J]. Plant Methods, 12, doi: 10.1186/s13007-016-0147-1. |
[8] |
Campos-Rivero G, Osorio-Montalvo P, Sanchez-Borges R, et al.2017. Plant hormone signaling in flowering: An epigenetic point of view[J]. Journal of Plant Physiology, 214: 16-27.
doi: 10.1016/j.jplph.2017.03.018 |
[9] |
Cheng H, Qin L J, Lee S C, et al.2004. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function[J]. Development, 131(5): 1055-1064.
doi: 10.1242/dev.00992 |
[10] |
Cheng Y F, Zhao Y D.2007. A role for auxin in flower development[J]. Journal of Integrative Plant Biology, 49(1): 99-104.
doi: 10.1111/jipb.2007.49.issue-1 |
[11] |
Colasanti J, Sundaresan V.2000. "Florigen" enters the molecular age: Long-distance signals that cause plants to flower[J]. Trends in Biomedical Sciences, 25(5): 236-240.
doi: 10.1016/S0968-0004(00)01542-5 |
[12] |
Conti L.2017. Hormonal control of the floral transition: Can one catch them all[J]. Developmental Biology, 430(2): 288-301.
doi: 10.1016/j.ydbio.2017.03.024 |
[13] |
Creelman R A, Mullet J E.1997. Biosynthesis and action of jasmonates in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 48: 355-381.
doi: 10.1146/annurev.arplant.48.1.355 |
[14] |
Delatorre C, Rodriguez A, Rodriguez L, et al.2017. Hormonal profiling: Development of a simple method to extract and quantify phytohormones in complex matrices by UHPLC-MS/MS[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1040: 239-249.
doi: 10.1016/j.jchromb.2016.11.007 |
[15] |
Domagalska M A, Sarnowska E, Nagy F, et al.2010. Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana[J]. PLos One, 5(11): e14012. doi: 10.1371/journal.pone.0014012.
doi: 10.1371/journal.pone.0014012 |
[16] | Dong T, Park Y, Hwang I, et al.2015. Abscisic acid: Biosynthesis, inactivation, homoeostasis and signalling[J]. Plant Hormone Signalling, 58: 29-48. |
[17] |
Donnelly A, Yu R.2017. The rise of phenology with climate change: An evaluation of IJB publications[J]. International Journal of Biometeorology, 61: S29-S50.
doi: 10.1007/s00484-017-1371-8 |
[18] |
Farmer E E, Almeras E, Krishnamurthy V.2003. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory[J]. Current Opinion in Plant Biology, 6(4): 372-378.
doi: 10.1016/S1369-5266(03)00045-1 |
[19] |
Gumustas M, Kurbanoglu S, Uslu B, et al.2013. UPLC versus HPLC on drug analysis: Advantageous, Applications and their validation parameters[J]. Chromatographia, 76(21-22): 1365-1427.
doi: 10.1007/s10337-013-2477-8 |
[20] |
Hedden P.1993. Modern methods for the quantitative-analysis of plant hormones[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 44: 107-129.
doi: 10.1146/annurev.pp.44.060193.000543 |
[21] |
Jacqmard A, Gadisseur I, Bernier G.2003. Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition[J]. Annals of Botany, 91(5): 571-576.
doi: 10.1093/aob/mcg053 |
[22] | Jin J B, Jin Y H, Lee J, et al.2008. The SUMO E3 ligase, AtS1Z1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure[J]. Plant Journal, 53(3): 530-540. |
[23] |
Jiskrova E, Novak O, Pospisilova H, et al.2016. Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots[J]. New Biotechnology, 33(5): 735-742.
doi: 10.1016/j.nbt.2015.12.010 |
[24] |
Johnson P R, Ecker J R.1998. The ethylene gas signal transduction pathway: A molecular perspective[J]. Annual Review of Genetics, 32: 227-254.
doi: 10.1146/annurev.genet.32.1.227 |
[25] |
Koornneef M, Alonso-Blanco C, Peeters A J M, et al.1998. Genetic control of flowering time in Arabidopsis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 49: 345-370.
doi: 10.1146/annurev.arplant.49.1.345 |
[26] |
Laurie D A.1997. Comparative genetics of flowering time[J]. Plant Molecular Biology, 35: 167-177.
doi: 10.1023/A:1005726329248 |
[27] |
Luo X T, Cai B D, Chen X, et al.2017. Improved methodology for analysis of multiple phytohormones using sequential magnetic solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 983: 112-120.
doi: 10.1016/j.aca.2017.06.019 |
[28] |
Martinez C, Pons E, Prats G, et al.2004. Salicylic acid regulates flowering time and links defence responses and reproductive development[J]. Plant Journal, 37(2): 209-217.
doi: 10.1046/j.1365-313X.2003.01954.x |
[29] |
Mishra G, Zhang W H, Deng F, et al.2006. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis[J]. Science, 312: 264-266.
doi: 10.1126/science.1123769 |
[30] |
Muller A, Duchting P, Weiler E W.2002. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana[J]. Planta, 216(1): 44-56.
doi: 10.1007/s00425-002-0866-6 |
[31] |
Mueller M, Munne-Bosch S.2017. Hormone profiling in plant tissues[J]. Plant Hormones: Methods and Protocols, 1497: 249-258.
doi: 10.1007/978-1-4939-6469-7 |
[32] |
Mutasa E, Hedden P.2009. Gibberellin as a factor in floral regulatory networks[J]. Journal of Experimental Botany, 60(7): 1979-1989.
doi: 10.1093/jxb/erp040 |
[33] |
Offringa R, Hooykaas P.1999. Molecular approaches to study plant hormone signalling[J]. Biochemistry and Molecular Biology of Plant Hormones, 33: 391-410.
doi: 10.1016/S0167-7306(08)60497-4 |
[34] |
Pan X Q, Wang X M.2009. Profiling of plant hormones by mass spectrometry[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 877(26): 2806-2813.
doi: 10.1016/j.jchromb.2009.04.024 |
[35] |
Perilli S, Moubayidin L, Sabatini S.2010. The molecular basis of cytokinin function[J]. Current Opinion in Plant Biology, 13(1): 21-26.
doi: 10.1016/j.pbi.2009.09.018 |
[36] |
Plackova L, Oklestkova J, Pospiskova K, et al.2017. Microscale magnetic microparticle-based immunopurification of cytokinins from Arabidopsis root apex[J]. Plant Journal, 89(5): 1065-1075.
doi: 10.1111/tpj.2017.89.issue-5 |
[37] | Quint M, Delker C, Franklin K A, et al.2016. Molecular and genetic control of plant thermomorphogenesis[J]. Nature Plants, 2(1), doi: 10.1038/nplants.2015.190. |
[38] |
Quint M, Gray W M.2006. Auxin signaling[J]. Current Opinion in Plant Biology, 9(5): 448-453.
doi: 10.1016/j.pbi.2006.07.006 |
[39] |
Raskin I.1992. Salicylate, a new plant hormone[J]. Plant Physiology, 99(3): 799-803.
doi: 10.1104/pp.99.3.799 |
[40] |
Reinecke D M, Wickramarathna A D, Ozga J A, et al.2013. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea[J]. Plant Physiology, 163(2): 929-945.
doi: 10.1104/pp.113.225987 |
[41] |
Ross J, O'Neill D.2001. New interactions between classical plant hormones[J]. Trends in Plant Science, 6(1): 2-4.
doi: 10.1016/S1360-1385(00)01795-7 |
[42] |
Santner A, Calderon-Villalobos L I A, Estelle M.2009. Plant hormones are versatile chemical regulators of plant growth[J]. Nature Chemical Biology, 5(5): 301-307.
doi: 10.1038/nchembio.165 |
[43] |
Schafer M, Brutting C, Baldwin I T, et al.2016. High-throughput quantification of more than 100 primary- and secondary-metabolites, and phytohormones by a single solid-phase extraction based sample preparation with analysis by UHPLC-HESI-MS/MS[J]. Plant Methods, 12: 30. doi:10.1186/s13007-016-0130-x.
doi: 10.1186/s13007-016-0130-x |
[44] |
Schmelz E A, Engelberth J, Alborn H T, et al.2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 100(18): 10552-10557.
doi: 10.1073/pnas.1633615100 |
[45] | Schwartz M D.2013. Phenology: An integrative environmental science[M]. Springer Netherlands, 132: 170-171. doi: 10.1007/978-94-007-6925-0. |
[46] |
Su Z, Ma X, Guo H H, et al.2013. Flower development under drought stress: Morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis[J]. Plant Cell, 25(10): 3785-3807.
doi: 10.1105/tpc.113.115428 |
[47] |
Swaczynova J, Novak O, Hauserova E, et al.2007. New techniques for the estimation of naturally occurring brassinosteroids[J]. Journal of Plant Growth Regulation, 26(1): 1-14.
doi: 10.1007/s00344-006-0045-2 |
[48] |
Tanaka H, Dhonukshe P, Brewer P B, et al.2006. Spatiotemporal asymmetric auxin distribution: A means to coordinate plant development[J]. Cellular and Molecular Life Sciences, 63(23): 2738-2754.
doi: 10.1007/s00018-006-6116-5 |
[49] |
Wada K C, Yamada M, Shiraya T, et al.2010. Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil[J]. Journal of Plant Physiology, 167(6): 447-452.
doi: 10.1016/j.jplph.2009.10.006 |
[50] |
Wang Y P, Li L, Ye T T, et al.2013. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis[J]. Journal of Experimental Botany, 64(2): 675-684.
doi: 10.1093/jxb/ers361 |
[51] |
Weiler E W.1984. Immunoassay of plant-growth regulators[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 35: 85-95.
doi: 10.1146/annurev.pp.35.060184.000505 |
[52] |
Wilbert S M, Ericsson L H, Gordon M P.1998. Quantification of jasmonic acid, methyl jasmonate, and salicylic acid in plants by capillary liquid chromatography electrospray tandem mass spectrometry[J]. Analytical Biochemistry, 257(2): 186-194.
doi: 10.1006/abio.1997.2555 |
[53] |
Wu Y L, Hu B.2009. Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography[J]. Journal of Chromatography A, 1216(45): 7657-7663.
doi: 10.1016/j.chroma.2009.09.008 |
[54] |
Yokota T.1997. The structure, biosynthesis and function of brassinosteroids[J]. Trends in Plant Science, 2(4): 137-143.
doi: 10.1016/S1360-1385(97)01017-0 |
[1] | 董晓宇, 姚华荣, 戴君虎, 朱梦瑶. 2000—2017年内蒙古荒漠草原植被物候变化及对净初级生产力的影响[J]. 地理科学进展, 2020, 39(1): 24-35. |
[2] | 赵彦茜, 肖登攀, 柏会子, 陶福禄. 中国作物物候对气候变化的响应与适应研究进展[J]. 地理科学进展, 2019, 38(2): 224-235. |
[3] | 吴其慧, 李畅游, 孙标, 史小红, 赵胜男, 韩知明. 1986—2017年呼伦湖湖冰物候特征变化[J]. 地理科学进展, 2019, 38(12): 1933-1943. |
[4] | 周玉科. 基于数码照片的植被物候提取多方法比较研究[J]. 地理科学进展, 2018, 37(8): 1031-1044. |
[5] | 刘建文, 周玉科. 站点尺度的青藏高原时序NDVI重构方法比较与应用[J]. 地理科学进展, 2018, 37(3): 427-437. |
[6] | 黄文婕, 葛全胜, 戴君虎, 王焕炯. 贵阳木本植物始花期对温度变化的敏感度[J]. 地理科学进展, 2017, 36(8): 1015-1024. |
[7] | 刘亚辰, 方修琦, 陶泽兴, 戴君虎. 诗歌中物候记录的基本特征及用于历史气候重建的处理方法[J]. 地理科学进展, 2017, 36(4): 483-490. |
[8] | 李鹏, 封志明. 地缘经济背景下的老挝橡胶林地扩张监测及其影响研究综述[J]. 地理科学进展, 2016, 35(3): 286-294. |
[9] | 范德芹, 赵学胜, 朱文泉, 郑周涛. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3): 304-319. |
[10] | 夏浩铭, 李爱农, 赵伟, 边金虎, 雷光斌. 2001-2010年秦岭森林物候时空变化遥感监测[J]. 地理科学进展, 2015, 34(10): 1297-1305. |
[11] | 罗海江. 基于卫星遥感的北京城乡植物物候差异[J]. 地理科学进展, 2013, 32(10): 1463-1469. |
[12] | 张帅, 陶福禄. 水稻发育期模型研究进展[J]. 地理科学进展, 2012, 31(11): 1485-1491. |
[13] | 刘玲玲, 刘良云, 胡勇. 1982-2006 年欧亚大陆植被生长季开始时间遥感监测分析[J]. 地理科学进展, 2012, 31(11): 1433-1442. |
[14] | 陈效逑,王林海. 遥感物候学研究进展[J]. 地理科学进展, 2009, 28(1): 33-40. |
[15] | 顾峰雪,. 生态系统模型中物候的参数化方法研究进展[J]. 地理科学进展, 2006, 25(6): 68-75. |
|