地理科学进展 ›› 2019, Vol. 38 ›› Issue (1): 111-125.doi: 10.18306/dlkxjz.2019.01.010
崔学刚1,2(), 方创琳1,*(
), 李君3, 刘海猛1,2, 张蔷1
收稿日期:
2018-04-03
修回日期:
2018-09-10
出版日期:
2019-01-28
发布日期:
2019-01-22
通讯作者:
方创琳
作者简介:
第一作者简介:崔学刚(1990— ),男,山东淄博人,博士生,主要从事城市地理与区域规划研究。E-mail:
基金资助:
Xuegang CUI1,2(), Chuanglin FANG1,*(
), Jun LI3, Haimeng LIU1,2, Qiang ZHANG1
Received:
2018-04-03
Revised:
2018-09-10
Online:
2019-01-28
Published:
2019-01-22
Contact:
Chuanglin FANG
Supported by:
摘要:
按照地理学科发展趋势,对城镇化与生态环境耦合的研究将由定量描述转入动态模拟。目前,城镇化与生态环境耦合动态模拟模型呈现多元化。论文系统梳理了其中4类常见的动态模拟模型,包括城镇化与生态环境耦合系统动力学模型、基于人工智能算法的城镇化与生态环境耦合动态模拟模型、基于土地利用变化的城镇化与生态环境耦合动态模拟模型以及基于多模型集成的城镇化与生态环境耦合复合模型。主要结论如下:系统动力学模型被广泛应用于城市复杂系统、城市转型和可持续发展以及城镇化与生态环境单要素耦合的动态模拟之中,但存在空间解释不足以及忽视系统自适应性等问题;人工智能算法(ANN和BN)在自学习、自组织、自适应系统或不确定性系统模拟中具有显著优势,并被应用于城市扩张、环境变化、资源需求以及生态脆弱性的识别之中,但应用面相对狭窄且限制条件偏多;土地利用变化模型(CLUE/CLUE-S、CA和MAS)局限于从土地城镇化视角模拟城镇化与生态环境耦合;基于多模型集成的复合模型实现了各模型之间的优势互补,已成为城镇化与生态环境耦合动态模拟模型的发展趋势。今后,应从技术和理论2个层面实现城镇化与生态环境耦合动态模拟模型的进一步发展,并加强对微观过程的模拟。
崔学刚, 方创琳, 李君, 刘海猛, 张蔷. 城镇化与生态环境耦合动态模拟模型研究进展[J]. 地理科学进展, 2019, 38(1): 111-125.
Xuegang CUI, Chuanglin FANG, Jun LI, Haimeng LIU, Qiang ZHANG. Progress in dynamic simulation modeling of urbanization and ecological environment coupling[J]. PROGRESS IN GEOGRAPHY, 2019, 38(1): 111-125.
表1
城镇化与生态环境耦合动态模拟模型的对比"
模型名称 | 学科背景 | 模型优点 | 模型缺点 | 主要应用 |
---|---|---|---|---|
系统动力学 | 由系统科学理论与计算机仿真结合 | 建模过程简便,可以同理论与指标体系构建结合,降低系统边界和相关变量的识别难度 | 难以体现系统自适应特点;空间解释不足;部分反馈关系局限于回归关系 | 适用于城市复杂系统、城市转型和可持续发展以及城镇化与生态环境单要素耦合动态模拟 |
人工神经网络 | 由人工智能和计算机仿真结合 | 是一种典型的类人脑模型,具有自学习、联想储存和高速寻优3个优势;具有良好的非线性映射逼近性 | 在学习、因果解释等方面存在缺陷,尤其是不擅长处理不确定性问题 | 适用于城镇用地扩张、环境演变、污染扩散和资源需求动态模拟 |
贝叶斯网络 | 起源于人工智能领域,由概率论、统计学与图论结合 | 直观表现了事件因果;可以进行因果和诊断2个方向的推理;证据可以不完整;尤其擅长处理不确定问题 | 现有的算法难以应付庞大的节点数目;学习能力较人工神经网络明显不足 | 适用于城市生态脆弱性识别以及资源需求动态模拟 |
土地利用变化及效应模型 | 由LUCC研究、系统科学理论与计算机仿真结合 | 基于经验统计,CLUE模型适用于大空间尺度;CLUE-S模型适用于小空间尺度 | 偏重局部均衡分析;难以体现城镇化过程与土地系统的交互耦合过程 | 适用于多空间尺度的土地利用空间分配动态模拟 |
元胞自动机 | 由LUCC研究、系统科学理论与计算机仿真结合 | 基于“自下而上”的建模过程将复杂问题拆解;可表现复杂离散系统的动态演化过程;可进行局部/区域土地系统模拟 | 建立在空间均质假设之上,难以解决空间异质问题;放宽限制条件加剧了转换规则的复杂性;对土地变化的机理解释不足 | 适用于城市扩展和土地利用变化动态模拟 |
多智能体系统 | 由人工智能和复杂性科学结合 | 基于复杂自适应系统理论,弥补了对政策因素的忽视;既可以展现全局动态过程,还可以解释土地变化的动力机制 | 尚停留在理论探讨和初步应用阶段;研究空间被抽象为均质空间;模型验证难度较大 | 适用于政策驱动下的城市扩展和土地利用变化动态模拟 |
[1] |
陈海, 梁小英, 高海东, 等. 2008. Multi-Agent System 模型在土地利用/覆盖变化中的研究进展[J]. 自然资源学报, 23(2): 345-352.
doi: 10.11849/zrzyxb.2008.02.019 |
[Chen H, Liang X Y, Gao H D, et al.2008. A review on multi-agent system for the simulation of land-use and land-cover change. Journal of Natural Resources, 23(2): 345-352. ]
doi: 10.11849/zrzyxb.2008.02.019 |
|
[2] |
戴声佩, 张勃. 2013. 基于CLUE-S模型的黑河中游土地利用情景模拟研究: 以张掖市甘州区为例[J]. 自然资源学报, 28(2): 336-348.
doi: 10.11849/zrzyxb.2013.02.015 |
[Dai S P, Zhang B.2013. Land use change scenarios simulation in the middle reaches of the Heihe River Basin based on CLUE-S model: A case of Ganzhou District of Zhangye City. Journal of Natural Resources, 28(2): 336-348. ]
doi: 10.11849/zrzyxb.2013.02.015 |
|
[3] | 邓祥征, 林英志, 黄河清. 2009. 土地系统动态模拟方法研究进展[J]. 生态学杂志, 28(10): 2123-2129. |
[Deng X Z, Lin Y Z, Huang H Q.2009. Simulation of land system dyna-mics: A review. Chinese Journal of Ecology, 28(10): 2123-2129. ] | |
[4] | 方创琳, 任宇飞. 2017. 京津冀城市群地区城镇化与生态环境近远程耦合能值代谢效率及环境压力分析[J]. 中国科学(地球科学), 47(7): 833-846. |
[Fang C L, Ren Y F.2017. Analysis of emergy-based metabolic efficiency and environmental pressure on the local coupling and telecoupling between urbanization and the eco-environment in the Beijing-Tianjin-Hebei urban agglomeration. Scientia Sinica Terrae, 47(7): 833-846. ] | |
[5] | 方创琳, 周成虎, 顾朝林, 等. 2016. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径[J]. 地理学报, 71(4): 531-550. |
[Fang C L, Zhou C H, Gu C L, et al.2016. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations. Acta Geographica Sinica, 71(4): 531-550. ] | |
[6] | 付玲, 胡业翠, 郑新奇. 2016. 基于BP神经网络的城市增长边界预测: 以北京市为例[J]. 中国土地科学, 30(2): 22-30. |
[Fu L, Hu Y C, Zheng X Q.2016. The prediction of urban growth boundary based on BP artificial neural networks: An application to Beijing. China Land Science, 30(2): 22-30. ] | |
[7] | 傅伯杰. 2017. 地理学: 从知识、科学到决策[J]. 地理学报, 72(11): 1923-1932. |
[Fu B J.2017. Geography: From know-ledge, science to decision making support. Acta Geographica Sinica, 72(11): 1923-1932. ] | |
[8] | 顾朝林, 管卫华, 刘合林. 2017. 中国城镇化2050: SD模型与过程模拟[J]. 中国科学(地球科学), 47(7): 818-832. |
[Gu C L, Guan W H, Liu H L.2017. Chinese urbanization 2050: SD modeling and process simulation. Scientia Sinica Terrae, 47(7): 818-832. ] | |
[9] | 顾朝林, 张悦, 翟炜, 等. 2016. 城市与区域定量研究进展[J]. 地理科学进展, 35(12): 1433-1446. |
[Gu C L, Zhang Y, Zhai W, et al.2016. Progress in urban and regional quantitative research. Progress in Geography, 35(12): 1433-1446. ] | |
[10] | 关小东, 何建华. 2016. 基于贝叶斯网络的基本农田划定方法[J]. 自然资源学报, 31(6): 1061-1072. |
[Guan X D, He J H.2016. Prime farmland protection zoning based on Bayesian network. Journal of Natural Resources, 31(6): 1061-1072. ] | |
[11] |
郭欢欢, 李波, 侯鹰, 等. 2011. 元胞自动机和多主体模型在土地利用变化模拟中的应用[J]. 地理科学进展, 30(11): 1336-1344.
doi: 10.11820/dlkxjz.2011.11.002 |
[Guo H H, Li B, Hou Y, et al.2011. Cellular automata model and multi-agent model for the simulation of land use change: A review. Progress in Geography, 30(11): 1336-1344. ]
doi: 10.11820/dlkxjz.2011.11.002 |
|
[12] | 胡健, 孙金花. 2017. 基于FI-GA-NN融合的区域能源安全外生警源分级预警研究[J]. 资源科学, 39(6): 1048-1058. |
[Hu J, Sun J H.2017. Early classification warning for regional energy security exogenous sources based on FI-GA-NN model. Resources Science, 39(6): 1048-1058. ] | |
[13] | 胡喜生, 洪伟, 吴承祯. 2013. 福州市土地生态系统服务与城市化耦合度分析[J]. 地理科学, 33(10): 1216-1223. |
[Hu X S, Hong W, Wu C Z.2013. Coupling degrees of land ecosystem services and urbanization of Fuzhou City. Scientia Geographica Sinica, 33(10): 1216-1223. ] | |
[14] | 黄巍, 龙恩深. 2014. 成都PM2.5与气象条件的关系及城市空间形态的影响[J]. 中国环境监测, 30(4): 93-99. |
[Huang W, Long E S.2014. The relationship between PM2.5 and meteorological conditions in Chengdu and the impact of urban spatial morphology. Environmental Monitoring in China, 30(4): 93-99. ] | |
[15] | 黄影平. 2013. 贝叶斯网络发展及其应用综述[J]. 北京理工大学学报, 33(12): 1211-1219. |
[Huang Y P.2013. Survey on Bayesian network development and application. Transactions of Beijing Institute of Technology, 33(12): 1211-1219. ] | |
[16] | 焦李成, 杨淑媛, 刘芳, 等. 2016. 神经网络七十年: 回顾与展望[J]. 计算机学报, 39(8): 1697-1716. |
[Jiao L C, Yang S Y, Yang F, et al.2016. Seventy years beyond neural networks: Retrospect and prospect. Chinese Journal of Computers, 39(8): 1697-1716. ] | |
[17] | 金浩然, 戚伟, 刘振, 等. 2016. 国内外城市转型的研究进展及展望[J]. 世界地理研究, 25(6): 48-56. |
[Jin H R, Qi W, Liu Z, et al.2016. The progress and prospect of studies on urban transformation. World Regional Studies, 25(6): 48-56. ] | |
[18] | 黎斌, 何建华, 屈赛, 等. 2018. 基于贝叶斯网络的城市生态红线划定方法[J]. 生态学报, 38(3): 1-12. |
[Li B, He J H, Qu S, et al.2018. The progress and prospect of studies on urban transformation. Acta Ecologica Sinica, 38(3): 1-12. ] | |
[19] | 黎夏, 刘小平, 何晋强, 等. 2009. 基于耦合的地理模拟优化系统[J]. 地理学报, 64(8): 1009-1018. |
[Li X, Liu X P, He J Q, et al.2009. A geographical simulation and optimization system based on coupling strategies. Acta Geographica Sinica, 64(8): 1009-1018. ] | |
[20] | 李明, 张韧, 洪梅. 2018. 基于加权贝叶斯网络的海洋灾害评估与管理[J]. 海洋开发与管理, (1): 52-59. |
[Li M, Zhang R, Hong M, et al.2018. Marine disaster assessment and management based on weighted Bayesian network. Ocean Development and Management, (1): 52-59. ] | |
[21] |
李瑞, 张悟移. 2016. 基于RBF神经网络的物流业能源需求预测[J]. 资源科学, 38(3): 450-460.
doi: 10.18402/resci.2016.03.08 |
[Li R, Zhang W Y.2016. Energy demand forecast in the logistics sector based on RBF neural networks. Resources Science, 38(3): 450-460. ]
doi: 10.18402/resci.2016.03.08 |
|
[22] | 李少英, 刘小平, 黎夏, 等. 2017. 土地利用变化模拟模型及应用研究进展[J]. 遥感学报, 21(3): 329-340. |
[Li S Y, Liu X P, Li X, et al.2017. Simulation model of land use dynamics and application: Progress and prospects. Journal of Remote Sensing, 21(3): 329-340. ] | |
[23] | 李硕豪, 张军. 2015. 贝叶斯网络结构学习综述[J]. 计算机应用研究, 32(3): 641-646. |
[Li S H, Zhang J.2015. Review of Bayesian networks structure learning. Application Research of Computers, 32(3): 641-646. ] | |
[24] | 李维乾, 解建仓, 李建勋, 等. 2013. 基于元胞自动机与智能体的水污染可视化模拟仿真[J]. 西北农林科技大学学报(自然科学版), 41(3): 213-220. |
[Li W Q, Xie J C, Li J X, et al.2013. Visualization simulation of water pollution based on cellular automata and intelligent agent. Journal of Northwest A&F University (Natural Science Edition), 41(3): 213-220. ] | |
[25] | 梁友嘉, 徐中民, 钟方雷. 2011. 基于SD和CLUE-S模型的张掖市甘州区土地利用情景分析[J]. 地理研究, 30(3): 564-576. |
[Liang Y J, Xu Z M, Zhong F L.2011. Land use scenario analyses by based on system dynamic model and CLUE-S model at regional scale: A case study of Ganzhou District of Zhangye City. Geographical Research, 30(3): 564-576. ] | |
[26] | 刘承良, 颜琪, 罗静. 2013. 武汉城市圈经济资源环境耦合的系统动力学模拟[J]. 地理研究, 32(5): 857-869. |
[Liu C L, Yan Q, Luo J.2013. System dynamics simulation on the coupling of economy resources environment system in Wuhan metropolitan region. Geographical Research, 32(5): 857-869. ] | |
[27] | 刘柯. 2007. 基于主成分分析的BP神经网络在城市建成区面积预测中的应用: 以北京市为例[J]. 地理科学进展, 26(6): 129-137. |
[Liu K.2007. Application of BP neural network in the prediction of urban Built-up area: A case study of Beijing. Progress in Geography, 26(6): 129-137. ] | |
[28] | 刘树锋, 陈俊合. 2007. 基于神经网络理论的水资源承载力研究[J]. 资源科学, 29(1): 99-105. |
[Liu S F, Chen J H.2007. Water resources carrying capacity based on the theory of ANN. Resources Science, 29(1): 99-105. ] | |
[29] | 刘小平, 黎夏, 艾彬, 等. 2006. 基于多智能体的土地利用模拟与规划模型[J]. 地理学报, 61(10): 1101-1112. |
[Liu X P, Li X, Ai B, et al.2006. Multi-agent systems for simulating and planning land use development. Acta Geographica Sinica, 61(10): 1101-1112. ] | |
[30] | 刘艳艳, 王少剑. 2015. 珠三角地区城市化与生态环境的交互胁迫关系及耦合协调度[J]. 人文地理, 30(3): 64-71. |
[Liu Y Y, Wang S J.2015. Coupling coordinative degree and interactive coercing relationship between urbanization and eco-environment in Pearl River Delta. Human Geography, 30(3): 64-71. ] | |
[31] | 龙瀛, 毛其智, 杨东峰, 等. 2011. 城市形态、交通能耗和环境影响集成的多智能体模型[J]. 地理学报, 66(8): 1033-1044. |
[Long Y, Mao Q Z, Yang D F, et al.2011. A multi-agent model for urban form, transportation energy consumption and environmental impact integrated simulation. Acta Geographica Sinica, 66(8): 1033-1044. ] | |
[32] | 卢超, 王蕾娜, 张东山, 等. 2011. 水资源承载力约束下小城镇经济发展的系统动力学仿真[J]. 资源科学, 33(8): 1498-1504. |
[Lu C, Wang L N, Zhang D S, et al.2011. System dynamics simulation of small towns' economy under the constraints of water resources' carrying capacity. Resources Science, 33(8): 1498-1504. ] | |
[33] | 卢万合, 刘继生, 那伟. 2012. 基于系统动力学的资源枯竭型矿业城市产业转型仿真分析: 以吉林省辽源市为例[J]. 地理科学, 32(5): 577-583. |
[Lu W H, Liu J S, Na W.2012. Industry conversion simulation analysis of resources-exhausted mining city based on the system dynamics: Taking Liaoyuan City of Jilin Province as example. Scientia Geographica Sinica, 32(5): 577-583.] | |
[34] | 卢文喜, 罗建男, 鲍新华. 2011. 贝叶斯网络在水资源管理中的应用[J]. 吉林大学学报(地球科学版), 41(1): 153-158. |
[Lu W X, Luo J N, Bao X H.2011. Application of Bayesian network in water resource management. Journal of Jilin University (Earth Science Edition), 41(1): 153-158. ] | |
[35] | 陆文勋, 李峥, 孙鹏举, 等. 2017. 基于脱钩理论的城市化水平与耕地安全水平的近程耦合关系研究[J]. 生态与农村环境学报, 33(11): 968-974. |
[Lu W X, Li Z, Sun P J, et al.2017. Neighboring/adjacent coupling relationship between urbanization and farmland safety based on the decoupling theory. Journal of Ecology and Rural Environment, 33(11): 968-974. ] | |
[36] | 罗平, 耿继进, 李满春, 等. 2005. 元胞自动机的地理过程模拟机制及扩展[J]. 地理科学, 25(6): 6724-6730. |
[Luo P, Geng J J, Li M C, et al.2005. Mechanism of simulating geographic process and extension of cellular automata. Scientia Geographica Sinica, 25(6): 6724-6730. ] | |
[37] | 秦贤宏, 段学军, 李慧, 等. 2009. 基于SD和CA的城镇土地扩展模拟模型: 以江苏省南通地区为例[J]. 地理科学, 29(3): 439-444. |
[Qin X H, Duan X J, Li H, et al.2009. Urban land expansion simulation model based on SD and CA: A case study of Nantong City. Scientia Geographica Sinica, 29(3): 439-444. ] | |
[38] | 秦向东, 闵庆文. 2007. 元胞自动机在景观格局优化中的应用[J]. 资源科学, 29(4): 85-91. |
[Qin X D, Min Q W.2007. Application of cellular automata in landscape pattern optimization. Resources Science, 29(4): 85-91. ] | |
[39] | 仇保兴. 2017. 城市规划学新理性主义思想初探: 复杂自适应系统(CAS)视角[J]. 城市发展研究, 24(1): 1-8. |
[Qiu B X.2017. A preliminary research on the neo-rationality in urban planning: From the perspective of complex adaptive system (CAS). Urban Development Studies, 24(1): 1-8. ] | |
[40] | 全泉, 田光进, 沙默泉. 2011. 基于多智能体与元胞自动机的上海城市扩展动态模拟[J]. 生态学报, 31(10): 2875-2887. |
[Quan Q, Tian G J, Sha M Q.2011. Dynamic simulation of Shanghai urban expansion based on multi-agent system and cellular automata model. Acta Ecologica Sinica, 31(10): 2875-2887. ] | |
[41] | 史志富. 2012. 贝叶斯网络理论及其在军事系统中的应用 [M]. 北京: 国防工业出版社. |
[Shi Z F.2012. Bayesian network theory and its application in military systems. Beijing, China: National Defense Industry Press. ] | |
[42] | 宋学锋, 刘耀彬. 2006. 基于SD的江苏省城市化与生态环境耦合发展情景分析[J]. 系统工程理论与实践, (3): 124-130. |
[Song X F, Liu Y B.2006. Scenarios simulation of urbanization and ecological environment coupling in Jiangsu Province by system dynamic model. Systems Engineering—Theory & Practice, (3): 124-130. ] | |
[43] | 孙黄平, 黄震方, 徐冬冬, 等. 2017. 泛长三角城市群城镇化与生态环境耦合的空间特征与驱动机制[J]. 经济地理, 37(2): 163-170. |
[Sun H P, Huang Z F, Xu D D, et al.2017. The spatial characteristics and drive mechanism of coupling relationship between urbanization and eco-environment in the Pan Yangtze River Delta. Economic Geography, 37(2): 163-170. ] | |
[44] | 唐华俊, 吴文斌, 杨鹏, 等. 2009. 土地利用/土地覆被变化(LUCC)模型研究进展[J]. 地理学报, 64(4): 456-468. |
[Tang H J, Wu W B, Yang P, et al.2009. Recent progresses of land use and land cover change (LUCC) models. Acta Geographica Sinica, 64(4): 456-468. ] | |
[45] | 唐志鹏, 张进, 刘卫东. 2010. 自然过程与人文过程模拟之差异比较分析[J]. 地理学报, 65(12): 1581-1590. |
[Tang Z P, Zhang J, Liu W D, et al.2010. A comparative study on the differences of physical process and human process modeling. Acta Geographica Sinica, 65(12): 1581-1590. ] | |
[46] |
唐智华, 朱现龙, 李成. 2011. 土地利用/土地覆被变化CLUE-S模型与应用分析: 以扬州市为例[J]. 地球信息科学学报, 13(5): 695-700.
doi: 10.3724/SP.J.1047.2011.00695 |
[Tang Z H, Zhu X L, Li C.2011. Analysis of land use/land cover change in Yangzhou City based on CLUE-S model. Journal of Geo-information Science, 13(5): 695-700. ]
doi: 10.3724/SP.J.1047.2011.00695 |
|
[47] |
田多松, 傅碧天, 吕永鹏, 等. 2016. 基于SD和CLUE-S模型的区域土地利用变化对土壤有机碳储量影响研究[J]. 长江流域资源与环境, 25(4): 613-620.
doi: 10.11870/cjlyzyyhj201604011 |
[Tian D S, Fu B T, Lv Y P, et al.2016. Effect of regional land-use change on soil organic carbon storage based on SD and CLUE-S model. Resources and Environment in the Yangtze Basin, 25(4): 613-620. ]
doi: 10.11870/cjlyzyyhj201604011 |
|
[48] | 田光进, 邬建国. 2008. 基于智能体模型的土地利用动态模拟研究进展[J]. 生态学报, 28(9): 4451-4459. |
[Tian G J, Wu J G.2008. Simulating land use change with agent-based models: Progress and prospect. Acta Ecologica Sinica, 28(9): 4451-4459. ] | |
[49] | 王甫园, 王开泳, 陈田, 等. 2017. 城市生态空间研究进展与展望[J]. 地理科学进展, 36(2): 207-218. |
[Wang F Y, Wang K Y, Chen T, et al.2017. Progress and prospect of research on urban ecological space. Progress in Geography, 36(2): 207-218. ] | |
[50] | 王其藩. 1999. 复杂大系统综合动态分析与模型体系[J]. 管理科学学报, 2(2): 17-21. |
[Wang Q F.1999. Comprehensive and dynamic analysis and model set of large complex system. Journal of Management Sciences in China, 2(2): 17-21. ] | |
[51] | 王如松, 欧阳志云. 2012. 社会-经济-自然复合生态系统与可持续发展[J]. 中国科学院院刊, 27(3): 337-345. |
[Wang R S, Ouyang Z Y.2012. Social-economic-natural complex ecosystem and sustainability. Bulletin of Chinese Academy of Sciences, 27(3): 337-345. ] | |
[52] | 王行风, 汪云甲, 李永峰. 2013. 基于SD-CA-GIS的环境累积效应时空分析模型及应用[J]. 环境科学学报, 33(7): 2078-2086. |
[Wang X F, Wang Y J, Li Y F.2013. Analysis and assessment model of environmental cumulative effects based on the integration of SD, CA and GIS methods and its application. Acta Scientiae Circumstantiae, 33(7): 2078-2086. ] | |
[53] | 吴健生, 冯喆, 高阳, 等. 2012. CLUE-S模型应用进展与改进研究[J]. 地理科学进展, 31(1): 3-10. |
[Wu J S, Feng Z, Gao Y, et al.2012. Recent progresses on the application and improvement of the CLUE-S model. Progress in Geography, 31(1): 3-10. ] | |
[54] | 邢文训, 谢金星. 2006. 现代优化计算方法 [M]. 北京: 清华大学出版社. |
[Xing W X, Xie J X.2006. Modern optimization calculation methods. Beijing, China: Tsinghua University Press. ] | |
[55] | 徐建华. 2010. 地理建模方法 [M]. 北京: 科学出版社. |
[Xu J H.2010. Geomodeling methods. Beijing, China: Science Press. ] | |
[56] |
严冬, 李爱农, 南希, 等. 2016. 基于Dyna-CLUE改进模型和SD模型耦合的山区城镇用地情景模拟研究: 以岷江上游地区为例[J]. 地球信息科学学报, 18(4): 514-525.
doi: 10.3724/SP.J.1047.2016.00514 |
[Yan D, Li A N, Nan X, et al.2016. The study of urban land scenario simulation in mountain area based on modified Dyna-CLUE model and SDM: A case study of the upper reaches of Minjiang River. Journal of Geo-information Science, 18(4): 514-525.]
doi: 10.3724/SP.J.1047.2016.00514 |
|
[57] | 杨继琼. 2007. 基于Netica的贝叶斯网络结构的设计与实现 [D]. 昆明: 云南大学. |
[Yang J Q.2007. Design and implementation of Bayesian network structure based on Netica. Kunming, China: Yunnan University. ] | |
[58] | 杨俊, 解鹏, 席建超, 等. 2015. 基于元胞自动机模型的土地利用变化模拟: 以大连经济技术开发区为例[J]. 地理学报, 70(3): 461-475. |
[Yang J, Xie P, Xi J C, et al.2015. LUCC simulation based on the cellular automata simulation: A case study of Dalian economic and technological development zone. Acta Geographica Sinica, 70(3): 461-475. ] | |
[59] |
杨青生, 黎夏. 2007. 多智能体与元胞自动机结合及城市用地扩张模拟[J]. 地理科学, 27(4): 542-548.
doi: 10.3969/j.issn.1000-0690.2007.04.015 |
[Yang Q S, Li X.2007. Mechanism of simulating geographic process and extension of cellular automata. Scientia Geographica Sinica, 27(4): 542-548. ]
doi: 10.3969/j.issn.1000-0690.2007.04.015 |
|
[60] | 杨青生, 乔纪纲, 艾彬. 2013. 基于元胞自动机的城市生态安全格局模拟: 以东莞市为例[J]. 应用生态学报, 24(9): 2599-2607. |
[Yang Q S, Qiao J G, Ai B.2013. Simulation of urban ecological security pattern based on cellular automata: A case of Dongguan City, Guangdong Province of South China. Chinese Journal of Applied Ecology, 24(9): 2599-2607. ] | |
[61] | 杨晓帆, 陈廷槐. 1994. 人工神经网络固有的优点和缺点[J]. 计算机科学, 21(2): 23-26. |
[Yang X F, Chen T H.1994. The inherent advantages and disadvantages of artificial neural networks. Computer Science, 21(2): 23-26. ] | |
[62] | 宇林军, 孙丹峰, 彭仲仁, 等. 2013. 基于局部化转换规则的元胞自动机土地利用模型[J]. 地理研究, 32(4): 671-682. |
[Yu L J, Sun D F, Peng Z R, et al.2013. A cellular automata land use model based on localized transition rules. Geographical Research, 32(4): 671-682. ] | |
[63] | 张连文, 郭海鹏. 2006. 贝叶斯网引论 [M]. 北京: 科学出版社. |
[Zhang L W, Guo H P.2006. Introduction to Bayesian networks . Beijing, China: Science Press. ] | |
[64] | 张晓瑞, 方创琳, 王振波, 等. 2013. 基于RBF神经网络的城市建成区面积预测研究: 兼与BP神经网络和线性回归对比分析[J]. 长江流域资源与环境, 22(6): 691-697. |
[Zhang X R, Fang C L, Wang Z B, et al.2013. Prediction of urban built-up area based on RBF neural network: Comparative analysis with BP neural network and linear regression. Resources and Environment in the Yangtze Basin, 22(6): 691-697. ] | |
[65] | 张颖, 高倩倩. 2015. 基于灰色模型和模糊神经网络的综合水质预测模型研究[J]. 环境工程学报, 9(2): 537-545. |
[Zhang Y, Gao Q Q.2015. Comprehensive prediction model of water quality based on Grey model and fuzzy neural network. Chinese Journal of Environmental Engineering, 9(2): 537-545. ] | |
[66] | 张子珩, 濮励杰, 周秀慧. 2010. 乌海市可持续发展的系统动力学模型仿真[J]. 干旱区资源与环境, 24(12): 55-60. |
[Zhang Z H, Pu L J, Zhou X H.2010. System dynamic model for sustainable development of Wuhai City. Journal of Arid Land Resources and Environment, 24(12): 55-60.] | |
[67] |
赵莉, 杨俊, 李闯, 等. 2016. 地理元胞自动机模型研究进展[J]. 地理科学, 36(8): 1190-1196.
doi: 10.13249/j.cnki.sgs.2016.08.009 |
[Zhao L, Yang J, Li C.2016. System dynamic model for sustainable development of Wuhai City. Scientia Geographica Sinica, 36(8): 1190-1196. ]
doi: 10.13249/j.cnki.sgs.2016.08.009 |
|
[68] | 周锐, 苏海龙, 王新军, 等. 2011. 基于CLUE-S模型和Markov模型的城镇土地利用变化模拟预测: 以江苏省常熟市辛庄镇为例[J]. 资源科学, 33(12): 2262-2270. |
[Zhou R, Su H L, Wang X J, et al.2011. Land use scenarios simulation based on CLUE-S and Markov composite model. Resources Science, 33(12): 2262-2270. ] | |
[69] | 朱大奇. 2006. 人工神经网络原理及应用 [M]. 北京: 科学出版社. |
[Zhu D Q.1999. Principle and application of artificial neural network. Beijing, China: Science Press. ] | |
[70] | 朱杰, 管卫华. 2009. 产业视角下常州城市可持续发展SD模型[J]. 地理与地理信息科学, 25(3): 58-62. |
[Zhu J, Guan W H.2009. SD model on sustainable development in Changzhou from industry perspective. Geography and Geo-Information Science, 25(3): 58-62. ] | |
[71] |
左其亭. 2007. 人水系统演变模拟的嵌入式系统动力学模型[J]. 自然资源学报, 22(2): 268-274.
doi: 10.11849/zrzyxb.2007.02.014 |
[Zuo Q T.2007. The embedded system dynamic model used to human-water system modeling. Journal of Natural Resources, 22(2): 268-274. ]
doi: 10.11849/zrzyxb.2007.02.014 |
|
[72] | Abreu C G, Zaghetto A, Macchiavello B, et al.2013. A multi-agent model system for land-use change simulation[J]. Environmental Modelling & Software, 42(4): 30-46. |
[73] | Ahmed S J, Bramley G, Verburg P H.2014. Key driving factors influencing urban growth: Spatial-statistical modelling with CLUE-S[M]. Berlin, Germany: Springer. |
[74] | Balbi S, Villa F, Mojtahed V, et al.2016. A spatial Bayesian network model to assess the benefits of early warning for urban flood risk to people[J]. Natural Hazards & Earth System Sciences, 16(6): 1323-1337. |
[75] |
Bao C, Chen X.2017. Spatial econometric analysis on influencing factors of water consumption efficiency in urbanizing China[J]. Journal of Geographical Sciences, 27(12): 1450-1462.
doi: 10.1007/s11442-017-1446-9 |
[76] |
Batten D F.2007. Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals, by Michael Batty[J]. Journal of Regional Science, 47(3): 624-627.
doi: 10.1111/jors.2007.47.issue-3 |
[77] | Batty M.2007. Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals [M]. Cambridge, America: The MIT Press. |
[78] |
Batty M.2008. The size, scale, and shape of cities[J]. Science, 319: 769-771.
doi: 10.1126/science.1151419 |
[79] | Cai M, Yin Y, Xie M.2009. Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach[J]. Transportation Research Part D: Transport & Environment, 14(1): 32-41. |
[80] | Celio E, Koellner T, Grêt-Regamey A.2014. Modeling land use decisions with Bayesian networks: Spatially explicit analysis of driving forces on land use change[J]. Environmental Modelling & Software, 52: 222-233. |
[81] |
Conway J.1970. Game of life[J]. Scientific American, 223: 120-123.
doi: 10.1038/scientificamerican1170-120 |
[82] | Couclelis H M.1985. Cellular worlds: A framework for modeling micro-macro dynamics[J]. Environment & Planning A, 17(5): 585-596. |
[83] | Egilmez G, Tatari O.2012. A dynamic modeling approach to highway sustainability: Strategies to reduce overall impact[J]. Transportation Research Part A, 46(7): 1086-1096. |
[84] |
Fang C L, Liu H M, Li G D.2016. International progress and evaluation on interactive coupling effects between urbanization and the eco-environment[J]. Journal of Geographical Sciences, 26(8): 1081-1116.
doi: 10.1007/s11442-016-1317-9 |
[85] |
Fang W, An H, Li H, et al.2017. Accessing on the sustainability of urban ecological-economic systems by means of a coupled emergy and system dynamics model: A case study of Beijing[J]. Energy Policy, 100: 326-337.
doi: 10.1016/j.enpol.2016.09.044 |
[86] |
Feng Y Y, Chen S Q, Zhang L X.2013. System dynamics modeling for urban energy consumption and CO2, emissions: A case study of Beijing, China[J]. Ecological Modelling, 252: 44-52.
doi: 10.1016/j.ecolmodel.2012.09.008 |
[87] | Forrester J W, 1958. Industrial dynamics: A major breakthrough for decision makers[J]. Harvard Business Review, 36(4): 37-66. |
[88] | Froelich W.2015. Forecasting daily urban water demand using dynamic gaussian Bayesian network[J]. Communications in Computer & Information Science, 521: 333-342. |
[89] |
Guan D, Gao W, Su W, et al.2011. Modeling and dynamic assessment of urban economy-resource-environment system with a coupled system dynamics-geographic information system model[J]. Ecological Indicators, 11(5): 1333-1344.
doi: 10.1016/j.ecolind.2011.02.007 |
[90] | Guerrero C N, Schwarz P, Slinger J H.2016. A recent overview of the integration of system dynamics and agent-based modelling and simulation[C]// Proceedings of the 34th International Conference of the System Dynamics Society. Delft, Netherlands: 1-13. |
[91] | Haykin S S.2008. Neural networks and learning machines[M]. Englewood, NJ: Prentice Hall. |
[92] |
He C, Okada N, Zhang Q, et al.2006. Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China[J]. Applied Geography, 26(3-4): 323-345.
doi: 10.1016/j.apgeog.2006.09.006 |
[93] |
Hopfield J J.1982. Neural networks and physical systems with emergent collective computational abilities[J]. PNAS, 79(8): 2554-2558.
doi: 10.1073/pnas.79.8.2554 |
[94] |
Le Q B, Park S J, Vlek P L G.2010. Land use dynamic simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human-landscape system: 2. Scenario-based application for impact assessment of land-use policies[J]. Ecological Informatics, 5(3): 203-221.
doi: 10.1016/j.ecoinf.2010.02.001 |
[95] |
Lee J H W, Huang Y, Dickman M, et al.2003. Neural network modelling of coastal algal blooms[J]. Ecological Modelling, 159(2-3): 179-201.
doi: 10.1016/S0304-3800(02)00281-8 |
[96] |
Lewe J H, Hivin L F, Mavris D N.2014. A multi-paradigm approach to system dynamics modeling of intercity transportation[J]. Transportation Research Part E, 71: 188-202.
doi: 10.1016/j.tre.2014.09.011 |
[97] |
Li F, Sun Y, Li X, et al.2016. Research on the sustainable development of green-space in Beijing using the dynamic systems model[J]. Sustainability, 8(10): 965-981.
doi: 10.3390/su8100965 |
[98] | Li J P, Duan H M, Qiu M.2014. Study on urban sustainable development based on system dynamics[J]. Applied Mechanics & Materials, 587-589: 171-175. |
[99] | Li Y F, Li Y, Zhou Y, et al.2012. Investigation of a coupling model of coordination between urbanization and the environment[J]. Journal of Environmental Management, 98(1): 127-133. |
[100] | Liu J G, Hull V, Batistella M, et al.2013. Framing sustainability in a telecoupled world[J]. Ecology & Society, 18(2): 344-365. |
[101] | Liu X P, Liang X, Li X, et al.2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape & Urban Planning, 168:94-116. |
[102] |
Mavrommati G, Bithas K, Panayiotidis P.2013. Operationalizing sustainability in urban coastal systems: A system dynamics analysis[J]. Water Research, 47(20): 7235-7250.
doi: 10.1016/j.watres.2013.10.041 |
[103] | Meadows D H, Meadows D L, Randers J, et al.1972. The limits to growth[M]. New York: Universe Books. |
[104] | Mohammady M, Moradi H R, Zeinivand H, et al.2017. Modeling and assessing the effects of land use changes on runoff generation with the CLUE-S and WetSpa models[J]. Theoretical & Applied Climatology, (2): 1-13. |
[105] | Orekan V O A.2007. Implementation of the local land-use and land-cover change model CLUE-S for central Benin by using socio-economic and remote sensing data[R]. Bonn, Germany: Universitäts und Landesbibliothek Bonn: 1-204. |
[106] |
Rosenblatt F, 1958. The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 65(6): 386.
doi: 10.1037/h0042519 |
[107] | Su Y M.2015. The research of urban development system model based on system dynamics[J]. Advanced Materials Research, 926-930: 4394-4397. |
[108] | Tirelli T, Pessani D.2011. Importance of feature selection in decision-tree and artificial-neural-network ecological applications[J]. Ecological Informatics, 6(5): 309-315. |
[109] | Tobler W R.1979. Cellular geography[M]// Gale S, Olsson G. Philosophy in geography. Theory and Decision Library, Vol 20. Springer, Dordrecht. |
[110] |
Verburg P H, Soepboer W, Veldkamp A, et al.2002. Modeling the spatial dynamics of regional land use: The CLUE-S model[J]. Environmental Management, 30(3): 391-405.
doi: 10.1007/s00267-002-2630-x |
[111] |
Viotti P, Liuti G, Genova P D.2002. Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia[J]. Ecological Modelling, 148(1): 27-46.
doi: 10.1016/S0304-3800(01)00434-3 |
[112] | Wan L, Zhang Y, Qi S, et al.2016. A study of regional sustainable development based on GIS/RS and SD model: Case of Hadaqi industrial corridor[J]. Journal of Cleaner Production, 142: 654-662. |
[113] | White R, Engelen G, Uljee I.2008. The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics[J]. Environment and Planning B, 24(3): 323-343. |
[114] |
Yao L, Liu J, Wang R, et al.2015. A qualitative network model for understanding regional metabolism in the context of social-economic-natural complex ecosystem theory[J]. Ecological Informatics, 26(1): 29-34.
doi: 10.1016/j.ecoinf.2014.05.014 |
[115] | Zhang B, Qin Y, Huang M, et al.2011. SD-GIS-based temporal-spatial simulation of water quality in sudden water pollution accidents[J]. Computers & Geosciences, 37(7): 874-882. |
[1] | 刘小茜, 马廷, 裴韬, 王向东, 杜云艳, 谢传节. 京津冀地区人口规模调控政策参数化路径与系统模拟[J]. 地理科学进展, 2017, 36(1): 34-45. |
[2] | 顾朝林, 张悦, 翟炜, 管卫华, 李强, 赵娜, 刘晨. 城市与区域定量研究进展[J]. 地理科学进展, 2016, 35(12): 1433-1446. |
[3] | 张丽娟, 李文亮, 刘栋, 周东颖, P.H.Verburg. 哈大齐工业走廊土地利用空间变化动态模拟[J]. 地理科学进展, 2011, 30(9): 1180-1186. |
[4] | 肖洪1,2|田怀玉2|朱佩娟2|于桓凯3. 基于多智能体的城市人口分布动态模拟与预测[J]. 地理科学进展, 2010, 29(3): 347-354. |
[5] | 徐霞,刘海鹏,高琼. 中国北方农牧交错带土地利用空间优化布局的动态模拟[J]. 地理科学进展, 2008, 27(3): 80-85. |
|