地理科学进展 ›› 2019, Vol. 38 ›› Issue (1): 77-87.doi: 10.18306/dlkxjz.2019.01.007
收稿日期:
2018-06-08
修回日期:
2018-11-20
出版日期:
2019-01-28
发布日期:
2019-01-22
通讯作者:
陈彦光
作者简介:
第一作者简介:赵静湉(1990— ),女,天津市人,硕士研究生,主要从事城市地理研究。E-mail:
基金资助:
Jingtian ZHAO(), Yanguang CHEN*(
), Shuangcheng LI
Received:
2018-06-08
Revised:
2018-11-20
Online:
2019-01-28
Published:
2019-01-22
Contact:
Yanguang CHEN
Supported by:
摘要:
区域城乡一体化的标志之一是城镇体系结构的一体化,这个过程可以从标度的角度进行描述和评价。分形是标度分析的重要方法,地理空间无尺度分布特征的典型参数是分维。论文以京津冀城镇体系为例,利用遥感图像的解译数据和人口普查数据开展分形分析、位序-规模分布分析和异速标度分析,用以解释1995—2013年间京津冀城镇体系演化的过程。结果表明,京津冀城镇体系及其演化的特征有:①京津冀空间结构和位序-规模分布都表现为自仿射双分形结构;②京津冀区域的城市人口-城区面积异速标度退化为假线性关系;③随着城镇体系的演化,自仿射的双分形结构逐步向自相似分形结构演化。由此得出结论:其一,京津冀城镇体系存在结构性的不协调因素。其空间结构和等级结构具有二元化特征,但演化方向却呈现内在结构一体化的显著趋势。其二,大城市用地不够集约。城市边缘区的无序扩张导致土地利用铺张浪费。地方政府和规划专家可以有意识地利用城镇体系演化的这种特征和趋势制定管理措施和优化规划方案。
赵静湉, 陈彦光, 李双成. 京津冀城市用地形态的双分形特征及其演化[J]. 地理科学进展, 2019, 38(1): 77-87.
Jingtian ZHAO, Yanguang CHEN, Shuangcheng LI. Bi-fractal structure and evolution of the Beijing-Tianjin-Hebei region urban land-use patterns[J]. PROGRESS IN GEOGRAPHY, 2019, 38(1): 77-87.
表1
5个年份的京津冀区域城镇体系的盒子维测算结果"
容量维D0 | 信息维D1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
年份 | 整体 | 第一标度区 | 第二标度区 | 分维差 | 整体 | ||||||||
D0 | R2 | D(1) | R2 | D(2) | R2 | D(1)-D(2) | D1 | R2 | |||||
1995 | 1.4613 | 0.9647 | 1.7874 | 0.9973 | 1.0439 | 0.9920 | 0.7435 | 1.3072 | 0.9940 | ||||
2000 | 1.4582 | 0.9662 | 1.7829 | 0.9970 | 1.0602 | 0.9908 | 0.7227 | 1.3108 | 0.9933 | ||||
2005 | 1.4823 | 0.9732 | 1.7848 | 0.9967 | 1.1346 | 0.9911 | 0.6502 | 1.3405 | 0.9958 | ||||
2010 | 1.5288 | 0.9816 | 1.7878 | 0.9970 | 1.2259 | 0.9956 | 0.5619 | 1.4024 | 0.9960 | ||||
2013 | 1.5397 | 0.9834 | 1.7911 | 0.9969 | 1.2588 | 0.9955 | 0.5323 | 1.4107 | 0.9975 |
[1] | 陈涛. 1995. 豫北地区城镇体系的分形研究 [D]. 长春: 东北师范大学城市与环境学院. |
[Chen T.1995. Studies on fractal systems of towns in the central plains. Changchun, China: College of Urban and Environmental Sciences, Northeast Normal University. ] | |
[2] | 陈彦光. 2008. 分形城市系统: 标度、对称和空间复杂性 [M]. 北京: 科学出版社. |
[Chen Y G.2008. Fractal urban systems: scaling, symmetry, and spatial complexity. Beijing, China: Science Press. ] | |
[3] | 陈彦光. 2015. 简单、复杂与地理分布模型的选择[J]. 地理科学进展, 34(3): 321-329. |
[Chen Y G.2015. Simplicty, complexity, and mathematical modeling of geographical distributions. Progress in Geography, 34(3): 321-329. ] | |
[4] | 陈彦光. 2017. 城市形态的分维估算与分形判定[J]. 地理科学进展, 36(5): 529-539. |
[Chen Y G.2017. Approaches to estimating fractal dimension and identifying fractals of urban form. Progress in Geography, 36(5): 529-539. ] | |
[5] | 陈彦光, 刘继生. 1998. 城镇体系等级结构的分形维数及其测算方法[J]. 地理研究, 17(1): 82-89. |
[Chen Y G, Liu J S.1998. Fractal dimensions of hierarchical structure of urban systems and the methods of their determination. Geographical Research, 17(1): 82-89. ] | |
[6] | 陈勇, 陈嵘, 艾南山, 等. 1993. 城市规模分布的分形研究[J]. 经济地理, 13(3): 48-53. |
[Chen Y, Chen R, Ai N S, et al.1993. On the fractal property of city-size distributions. Economical Geography, 13(3): 48-53. ] | |
[7] | 姜世国. 2004. 基于北京遥感图像和GIS的分形城市形态研究: 理论、方法与实践 [D]. 北京: 北京大学环境学院. |
[Jiang S G.2004. Studies on fractal urban form using GIS and remote sensing images of Beijing: Theory, method and practice. Beijing, China: College of Environmental Sciences, Peking University. ] | |
[8] | 刘继生, 陈彦光. 1999. 东北地区城市规模分布的分形特征[J]. 人文地理, 14(3): 1-6. |
[Liu J S, Chen Y G.1999. A preliminary study of fractal features of size distribution of cities in Northeast China. Human Geography, 14(3): 1-6. ] | |
[9] | 刘继生, 陈彦光. 2005. 山东省城市人口-城区面积的异速生长特征讨论[J]. 地理科学, 25(2): 135-141. |
[Liu J S, Chen Y G.2005. An allometric analysis of the Shandong urban system using ideas from fractals. Scientia Geographica Sinica, 25(2): 135-141. ] | |
[10] | 刘式达, 刘式适. 1993. 分形与分维引论 [M]. 北京: 气象出版社. |
[Liu S D, Liu S S.1993. An introduction to fractals and fractal dimension . Beijing, China: Meteorological Press. ] | |
[11] | 秦静, 方创琳, 王洋, 等. 2015. 基于三维计盒法的城市空间形态分维计算和分析[J]. 地理研究, 34(1): 85-96. |
[Qin J, Fang C L, Wang Y, et al.2015. A three dimensional box-counting method for estimating fractal dimension of urban form. Geographical Research, 34(1): 85-96. ] | |
[12] | 王洁晶. 2011. 长三角城市用地时空演化特征的分维与异速标度分析 [D]. 北京: 北京大学城市与环境学院. |
[Wang J J.2008. Fractal dimension and allometric analysis on spatio-temporal evolution of urban land-use in the Yangtze River Delta. Beijing, China: College of Urban and Environmental Sciences, Peking University. ] | |
[13] | 周一星. 1995. 城市地理学 [M]. 北京: 商务印书馆. |
[Zhou Y X.1995. Urban geography . Beijing, China: The Commercial Press. ] | |
[14] | Allen P M.1997. Cities and regions as self-organizing systems: Models of complexity[M]. London & New York: Routledge. |
[15] |
Batty M.2008. The size, scale, and shape of cities[J]. Science, 319: 769-771.
doi: 10.1126/science.1151419 |
[16] | Batty M, Longley P A.1994. Fractal cities: A geometry of form and function [M]. London, UK: Academic Press. |
[17] |
Benguigui L, Czamanski D, Marinov M, et al.2000. When and where is a city fractal?[J]. Environment and Planning B: Planning and Design, 27(4): 507-519.
doi: 10.1068/b2617 |
[18] | Benguigui L, Daoud M.1991. Is the suburban railway system a fractal?[J]. Geographical Analysis, 23(4): 362-368. |
[19] | Chen Y, Lin J.2009. Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals[J]. Chaos, Soliton & Fractals, 41(2): 615-629. |
[20] |
Chen Y G.2014. The spatial meaning of Pareto’s scaling exponent of city-size distributions[J]. Fractals, 22(1-2): 1450001. doi: 10.1142/S0218348X14500017.
doi: 10.1142/S0218348X14500017 |
[21] | Chen Y G, Feng J.2012. Fractal-based exponential distribution of urban density and self-affine fractal forms of cities[J]. Chaos, Solitons & Fractals, 45(11): 1404-1416. |
[22] | Chen Y G, Feng J.2017. A hierarchical allometric scaling analysis of Chinese cities: 1991-2014[J]. Discrete Dynamics in Nature and Society, doi: 10.1155/2017/5243287. |
[23] |
Chen Y G, Wang J J.2013. Multifractal characterization of urban form and growth: The case of Beijing[J]. Environment and Planning B: Planning and Design, 40(5): 884-904.
doi: 10.1068/b36155 |
[24] |
Chen Y G, Zhou Y X.2006. Reinterpreting central place networks using ideas from fractals and self-organized criticality[J]. Environment and Planning B: Planning and Design, 33(3): 345-364.
doi: 10.1068/b31131 |
[25] |
Clark C.1951. Urban population densities[J]. Journal of Royal Statistical Society, 114(4): 490-496.
doi: 10.2307/2981088 |
[26] |
Feng J, Chen Y G.2010. Spatiotemporal evolution of urban form and land use structure in Hangzhou, China: Evidence from fractals[J]. Environment and Planning B: Planning and Design, 37(5): 838-856.
doi: 10.1068/b35078 |
[27] | Frankhauser P.1998. The fractal approach: A new tool for the spatial analysis of urban agglomerations[J]. Population: An English Selection, 10(1): 205-240. |
[28] | Knox P L, Marston S A.2009. Places and regions in global context: human geography[M]. The 5th Edition. Upper Saddle River, NJ: Prentice Hall. |
[29] |
Lee Y.1989. An allmetric analysis of the US urban system: 1960-80[J]. Environment and Planning A, 21(4): 463-476.
doi: 10.1068/a210463 |
[30] | Portugali J.2000. Self-organization and the city[M]. Berlin, Germany: Springer. |
[31] | Pumain D.2006. Hierarchy in natural and social sciences[M]. Dordrecht, the Netherland: Springer. |
[32] |
Qin J, Fang C L, Wang Y, et al.2015. Evaluation of three-dimensional yrban expansion: A case study of Yangzhou City, Jiangsu Province, China[J]. Chinese Geographical Science, 25(2): 224-236.
doi: 10.1007/s11769-014-0728-8 |
[33] |
Shen G.2002. Fractal dimension and fractal growth of urbanized areas[J]. International Journal of Geographical Information Science, 16(5): 419-437.
doi: 10.1080/13658810210137013 |
[34] |
Sun J, Southworth J.2013. Remote sensing-based fractal analysis and scale dependence associated with forest fragmentation in an Amazon tri-national frontier[J]. Remote Sensing, 5(2): 454-472.
doi: 10.3390/rs5020454 |
[35] |
White R, Engelen G.1993. Cellular automata and fractal urban form: A cellular modeling approach to the evolution of urban land-use patterns[J]. Environment and Planning A, 25(8): 1175-1199.
doi: 10.1068/a251175 |
[36] | Zipf G K.1949. Human behavior and the principle of least effort[M]. Cambridge, MA: Addison-Wesley. |
[1] | 杨清可, 段学军, 王磊, 王雅竹. 长三角地区城市土地利用与生态环境效应的交互作用机制研究[J]. 地理科学进展, 2021, 40(2): 220-231. |
[2] | 张凤, 陈彦光, 刘鹏. 京津冀城镇体系与水系结构的时空关系研究[J]. 地理科学进展, 2020, 39(3): 377-388. |
[3] | 吕敏娟, 曹小曙. 1980—2016年黄土高原地区人口和可达性异速标度分析[J]. 地理科学进展, 2020, 39(11): 1884-1897. |
[4] | 陈彦光. 城市地理研究中的单分形、多分形和自仿射分形[J]. 地理科学进展, 2019, 38(1): 38-49. |
[5] | 黄琳珊, 陈彦光, 李双成. 京津冀城镇用地空间结构的多分维谱分析[J]. 地理科学进展, 2019, 38(1): 50-64. |
[6] | 龙玉清, 陈彦光. 基于灯光数据的京津冀城市多标度异速分析[J]. 地理科学进展, 2019, 38(1): 88-100. |
[7] | 张凤, 陈彦光, 李晓松. 京津冀城市生长和形态的径向维数分析[J]. 地理科学进展, 2019, 38(1): 65-76. |
[8] | 刘飞, 郑新奇, 黄晴. 基于空间分形特征的城市群实体空间识别方法[J]. 地理科学进展, 2017, 36(6): 677-684. |
[9] | 陈彦光. 城市形态的分维估算与分形判定[J]. 地理科学进展, 2017, 36(5): 529-539. |
[10] | 陈彦光. 简单、复杂与地理分布模型的选择[J]. 地理科学进展, 2015, 34(3): 321-329. |
[11] | 谭兴业, 陈彦光. 基于邻域扩展量化法的城市边界识别[J]. 地理科学进展, 2015, 34(10): 1259-1265. |
[12] | 陈彦光, 张莉. 信阳城市人口—城区用地异速生长分析[J]. 地理科学进展, 2014, 33(8): 1058-1067. |
[13] | 成功, 李仁杰, 张军海, 傅学庆. 成都茶馆空间随机聚集分形特征研究[J]. 地理科学进展, 2012, 31(6): 701-710. |
[14] | 王士君, 王永超, 冯章献. 吉林省中部地区中心地空间关系分析[J]. 地理科学进展, 2012, 31(12): 1628-1635. |
[15] | 柳坤, 申玉铭, 刘辉. 中国三大城市群服务业规模结构及演化特征[J]. 地理科学进展, 2012, 31(10): 1289-1294. |
|