地理科学进展 ›› 2019, Vol. 38 ›› Issue (1): 50-64.doi: 10.18306/dlkxjz.2019.01.005
收稿日期:
2018-03-07
修回日期:
2018-07-20
出版日期:
2019-01-28
发布日期:
2019-01-22
通讯作者:
陈彦光
作者简介:
第一作者简介:黄琳珊(1989— ),女,河南濮阳人,博士研究生,主要从事空间计算和地理信息分析。E-mail:
基金资助:
Linshan HUANG(), Yanguang CHEN*(
), Shuangcheng LI
Received:
2018-03-07
Revised:
2018-07-20
Online:
2019-01-28
Published:
2019-01-22
Contact:
Yanguang CHEN
Supported by:
摘要:
城市形态和城镇体系都具有分形性质,但简单分形模型不能有效揭示城市系统的复杂结构特征及其背后的问题。多分形模型及分析方法是研究城市空间复杂性和描述城市异质性的有效手段。利用城镇建设用地和总建设用地的多分维谱分析,可以发现京津冀城镇体系及主要城市的空间演化问题。主要结果如下:①京津冀总建设用地的全局谱线不正常,代表中心区的谱线收敛过快,而代表边缘区和乡村地区的谱线收敛位置严重越界;②局部谱线单峰左偏,左(趋向中心区)高密、右(趋向边缘区)低疏,且右边数值越界;③多分维增长曲线服从二次logistic函数,但不同区域和城市的增长曲线的拐点位置不同。深入分析谱线特征及其异常根源,得出如下结论:①京津冀主要城市的中心区填充过密,没有太多缓冲空间,而边缘区无序扩展,需要通过规划进行优化;②京津冀城市生长以外延扩展模式为主,但河北省总建设用地有中心集聚迹象;③京津冀地区特别是主要城市用地接近饱和,土地扩展速度高峰已经过去,只有河北省部分区域例外。
黄琳珊, 陈彦光, 李双成. 京津冀城镇用地空间结构的多分维谱分析[J]. 地理科学进展, 2019, 38(1): 50-64.
Linshan HUANG, Yanguang CHEN, Shuangcheng LI. Multifractal spectral analysis of land use structure of the Beijing-Tianjin-Hebei urban system[J]. PROGRESS IN GEOGRAPHY, 2019, 38(1): 50-64.
表1
城镇建设用地、农村居民点用地、工矿和交通建设用地的面积及占总建设用地的比例"
年份 | 城镇建设用地 | 农村居民点用地 | 工矿和交通建设用地 | 总建设用地面积/m2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
面积/m2 | 比例 | 面积/m2 | 比例 | 面积/m2 | 比例 | |||||
1995 | 3430909489 | 0.2020 | 11154546324 | 0.6569 | 2395113056 | 0.1411 | 16980568869 | |||
2000 | 3541167552 | 0.2043 | 11451994392 | 0.6606 | 2343239014 | 0.1352 | 17336400957 | |||
2005 | 4775537679 | 0.2404 | 11709702253 | 0.5894 | 3381724968 | 0.1702 | 19866964900 | |||
2010 | 6517866881 | 0.2589 | 14435903946 | 0.5734 | 4222176983 | 0.1677 | 25175947809 | |||
2013 | 8079748079 | 0.3250 | 13273658619 | 0.5340 | 3505285674 | 0.1410 | 24858692372 |
表2
京津冀城镇建设用地和总建设用地的容量维、信息维和关联维数"
年份 | 城镇建设用地 | 总建设用地 | |||||||
---|---|---|---|---|---|---|---|---|---|
D0 | D1 | D2 | D1/D0 | D0 | D1 | D2 | D1/D0 | ||
1995 | 1.4411 | 1.2858 | 1.1949 | 0.8922 | 1.8071 | 1.6847 | 1.6062 | 0.9323 | |
2000 | 1.4374 | 1.2899 | 1.2017 | 0.8974 | 1.8062 | 1.6868 | 1.6124 | 0.9339 | |
2005 | 1.4623 | 1.3157 | 1.2331 | 0.8998 | 1.8135 | 1.6882 | 1.6108 | 0.9309 | |
2010 | 1.5075 | 1.3781 | 1.3074 | 0.9141 | 1.8479 | 1.7248 | 1.6534 | 0.9334 | |
2013 | 1.5187 | 1.3860 | 1.3122 | 0.9126 | 1.8414 | 1.7064 | 1.6316 | 0.9267 | |
平均 | 1.4734 | 1.3311 | 1.1949 | 0.9032 | 1.8232 | 1.6982 | 1.6062 | 0.9314 |
表3
京津冀城镇建设用地和总建设用地的奇异性指数和局部维数的容量值"
年份 | 城镇建设用地 | 总建设用地 | |||||||
---|---|---|---|---|---|---|---|---|---|
α(0) | f(α(0)) | Δα | Δf | α(0) | f(α(0)) | Δα | Δf | ||
1995 | 1.6481 | 1.4411 | 1.6058 | 0.2237 | 1.9823 | 1.8071 | 1.6746 | 0.0732 | |
2000 | 1.6358 | 1.4374 | 1.6226 | 0.2356 | 1.9824 | 1.8062 | 1.6444 | 0.0698 | |
2005 | 1.6650 | 1.4623 | 1.6595 | 0.2946 | 1.9953 | 1.8135 | 1.6789 | 0.1076 | |
2010 | 1.6995 | 1.5075 | 1.6570 | 0.2467 | 2.0248 | 1.8479 | 1.6651 | 0.1239 | |
2013 | 1.7123 | 1.5187 | 1.7415 | 0.3932 | 2.0414 | 1.8414 | 1.6786 | 0.0861 | |
平均 | 1.6721 | 1.4734 | 1.6573 | 0.2788 | 2.0052 | 1.8232 | 1.6683 | 0.0921 |
表4
1995—2013年北京市、天津市和河北省的城镇建设用地和总建设用地的容量维、信息维和关联维"
地区 | 年份 | 城镇建设用地 | 总建设用地 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D0 | D1 | D2 | D1/D0 | D2/D1 | D0 | D1 | D2 | D1/D0 | D2/D1 | |||
北京市 | 1995 | 1.4662 | 1.3575 | 1.3246 | 0.9259 | 0.9758 | 1.6934 | 1.5817 | 1.5292 | 0.9340 | 0.9668 | |
2000 | 1.4154 | 1.3408 | 1.3126 | 0.9473 | 0.9790 | 1.7100 | 1.5983 | 1.5436 | 0.9347 | 0.9658 | ||
2005 | 1.4745 | 1.4137 | 1.3903 | 0.9587 | 0.9835 | 1.7331 | 1.6264 | 1.5826 | 0.9384 | 0.9731 | ||
2010 | 1.4740 | 1.4054 | 1.3802 | 0.9535 | 0.9820 | 1.7390 | 1.6256 | 1.5789 | 0.9348 | 0.9712 | ||
2013 | 1.5558 | 1.5079 | 1.4917 | 0.9692 | 0.9893 | 1.7630 | 1.6497 | 1.6122 | 0.9357 | 0.9773 | ||
平均 | 1.4772 | 1.4051 | 1.3799 | 0.9509 | 0.9819 | 1.7277 | 1.6163 | 1.5693 | 0.9355 | 0.9708 | ||
天津市 | 1995 | 1.4168 | 1.3258 | 1.2835 | 0.9357 | 0.9681 | 1.7598 | 1.6730 | 1.6163 | 0.9507 | 0.9661 | |
2000 | 1.4153 | 1.3306 | 1.2915 | 0.9402 | 0.9706 | 1.7500 | 1.6676 | 1.6113 | 0.9529 | 0.9663 | ||
2005 | 1.4658 | 1.3912 | 1.3587 | 0.9491 | 0.9767 | 1.7759 | 1.6927 | 1.6436 | 0.9531 | 0.9710 | ||
2010 | 1.5183 | 1.4488 | 1.4205 | 0.9542 | 0.9805 | 1.8017 | 1.7185 | 1.6714 | 0.9538 | 0.9726 | ||
2013 | 1.5091 | 1.4430 | 1.4141 | 0.9562 | 0.9800 | 1.7887 | 1.7035 | 1.6566 | 0.9524 | 0.9725 | ||
平均 | 1.4651 | 1.3879 | 1.3537 | 0.9471 | 0.9752 | 1.7752 | 1.6911 | 1.6399 | 0.9526 | 0.9697 | ||
河北省 | 1995 | 1.3666 | 1.2432 | 1.1689 | 0.9097 | 0.9402 | 1.7815 | 1.6649 | 1.5917 | 0.9345 | 0.9561 | |
2000 | 1.3730 | 1.2515 | 1.1787 | 0.9115 | 0.9419 | 1.7799 | 1.6634 | 1.5928 | 0.9346 | 0.9575 | ||
2005 | 1.3943 | 1.2745 | 1.2051 | 0.9140 | 0.9456 | 1.7871 | 1.6699 | 1.5988 | 0.9344 | 0.9575 | ||
2010 | 1.4522 | 1.3338 | 1.2668 | 0.9185 | 0.9498 | 1.8257 | 1.7050 | 1.6357 | 0.9339 | 0.9594 | ||
2013 | 1.4567 | 1.3425 | 1.2796 | 0.9216 | 0.9531 | 1.8172 | 1.6890 | 1.6217 | 0.9295 | 0.9602 | ||
平均 | 1.4086 | 1.2891 | 1.2198 | 0.9151 | 0.9461 | 1.7983 | 1.6784 | 1.6082 | 0.9334 | 0.9581 |
表5
1995—2013年北京市、天津市和河北省的城镇建设用地和总建设用地的奇异性指数和局部分维"
地区 | 年份 | 城镇用地 | 总建设用地 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
α(q) | f(α(q)) | Δα | Δf | α(q) | f(α(q)) | Δα | Δf | |||
北京市 | 1995 | 1.6558 | 1.4662 | 1.3039 | 0.3908 | 1.8587 | 1.6934 | 1.2182 | 0.1128 | |
2000 | 1.5371 | 1.4154 | 1.1037 | 0.4278 | 1.8750 | 1.7100 | 1.2329 | 0.1191 | ||
2005 | 1.5763 | 1.4745 | 1.1152 | 0.4844 | 1.9037 | 1.7331 | 1.2554 | 0.2103 | ||
2010 | 1.5909 | 1.4740 | 1.1052 | 0.4435 | 1.9182 | 1.7390 | 1.2742 | 0.1650 | ||
2013 | 1.6479 | 1.5558 | 1.2286 | 0.6240 | 1.9568 | 1.7630 | 1.2733 | 0.2655 | ||
平均 | 1.6016 | 1.4772 | 1.1713 | 0.4741 | 1.9025 | 1.7277 | 1.2508 | 0.1745 | ||
天津市 | 1995 | 1.5496 | 1.4168 | 1.1546 | 0.2314 | 1.8673 | 1.7598 | 1.1171 | 0.1183 | |
2000 | 1.5393 | 1.4153 | 1.0927 | 0.2522 | 1.8515 | 1.7500 | 1.1170 | 0.0538 | ||
2005 | 1.5847 | 1.4658 | 1.1214 | 0.3926 | 1.8858 | 1.7759 | 1.1379 | 0.1557 | ||
2010 | 1.6404 | 1.5183 | 1.2077 | 0.3709 | 1.9124 | 1.8017 | 1.1446 | 0.2058 | ||
2013 | 1.6174 | 1.5091 | 1.1413 | 0.4349 | 1.9042 | 1.7887 | 1.1383 | 0.1910 | ||
平均 | 1.5863 | 1.4651 | 1.1435 | 0.3364 | 1.8842 | 1.7752 | 1.1310 | 0.1449 | ||
河北省 | 1995 | 1.5442 | 1.3666 | 1.5365 | 0.0878 | 1.9515 | 1.7815 | 1.6511 | -0.0181 | |
2000 | 1.5477 | 1.3730 | 1.5502 | 0.1061 | 1.9538 | 1.7799 | 1.6227 | -0.0182 | ||
2005 | 1.5699 | 1.3943 | 1.5452 | 0.1246 | 1.9614 | 1.7871 | 1.7057 | -0.0172 | ||
2010 | 1.6330 | 1.4522 | 1.6453 | 0.1116 | 2.0006 | 1.8257 | 1.7070 | 0.0492 | ||
2013 | 1.6335 | 1.4567 | 1.6931 | 0.2151 | 2.0119 | 1.8172 | 1.7163 | -0.1211 | ||
平均 | 1.5857 | 1.4086 | 1.5941 | 0.1290 | 1.9759 | 1.7983 | 1.6806 | -0.0251 |
[1] | 陈涛. 1995. 豫北地区城镇体系的分形研究 [D]. 长春: 东北师范大学城市与环境学院. |
[Chen T.1995. Studies on fractal systems of towns in the central plains. Changchun, China: College of Urban and Environmental Sciences, Northeast Normal University. ] | |
[2] | 陈彦光. 2015. 简单、复杂与地理分布模型的选择[J]. 地理科学进展, 34(3): 321-329. |
[Chen Y G.2015. Simplicity, complexity, and mathematical modeling of geographical distributions. Progress in Geography, 34(3): 321-329.] | |
[3] | 陈彦光, 周一星. 2001. 豫北地区城镇体系空间结构的多分形研究[J]. 北京大学学报(自然科学版),37(6): 810-818. |
[Chen Y G, Zhou Y X.2001. A study of multifractals measures of the spatial structure of the urban system in central plains. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6): 810-818. ] | |
[4] | 刘继生, 陈彦光. 2003. 河南省城镇体系空间结构的多分形特征及其与水系分布的关系探讨[J]. 地理科学, 23(6): 713-720. |
[Liu J S, Chen Y G.2003. Multifractal measures based on man-land relationships of the spatial structure of the urban system in Henan. Scientia Geographica Sinica, 23(6): 713-720. ] | |
[5] | 汪富泉, 李后强. 1996. 分形——大自然的艺术构造 [M]. 济南: 山东教育出版社. |
[Wang F Q, Li H Q.1996. Fractals: The artistic structure of nature. Jinan, China: Shandong Education Press. ] | |
[6] | Allen P M.1997. Cities and regions as self-organizing systems: Models of complexity[M]. London & New York: Routledge. |
[7] | Arbesman S.2012. The half-life of facts: Why everything we know has an expiration date[M]. New York: Penguin Group. |
[8] |
Ariza-Villaverde A B, Jimenez-Hornero F J, De Rave E G.2013. Multifractal analysis of axial maps applied to the study of urban morphology[J]. Computers, Environment and Urban Systems, 38: 1-10.
doi: 10.1016/j.compenvurbsys.2012.11.001 |
[9] | Batty M, Longley P A.1994. Fractal cities: A geometry of form and function [M]. London, UK: Academic Press. |
[10] |
Chen Y G.2014. Multifractals of central place systems: Models, dimension spectrums, and empirical analysis[J]. Physica A, 402: 266-282.
doi: 10.1016/j.physa.2014.01.061 |
[11] |
Chen Y G.2016. Defining urban and rural regions by multifractal spectrums of urbanization[J]. Fractals, 24(1): 1650004.
doi: 10.1142/S0218348X16500043 |
[12] | Chen Y G, Lin J Y.2009. Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals[J]. Chaos, Soliton & Fractals, 41: 615-629. |
[13] |
Chen Y G, Wang J J.2013. Multifractal characterization of urban form and growth: The case of Beijing[J]. Environment and Planning B: Planning and Design, 40(5): 884-904.
doi: 10.1068/b36155 |
[14] | Chen Y G, Zhou Y X.2004. Multi-fractal measures of city-size distributions based on the three-parameter Zipf model[J]. Chaos, Solitons & Fractals, 22(4): 793-805. |
[15] |
Chhabra A, Jensen R V.1989. Direct determination of the f(α) singularity spectrum[J]. Physical Review Letters, 62(12): 1327-1330.
doi: 10.1103/PhysRevLett.62.1327 |
[16] |
Encarnação S, Gaudiano M, Santos F C, et al.2012. Fractal cartography of urban areas[J]. Scientific Reports, 2: 527.
doi: 10.1038/srep00527 |
[17] | Feder J.1988. Fractals [M]. New York: Plenum Press. |
[18] |
Folorunso O A, Puente C E, Rolston D E, et al.1994. Statistical and fractal evaluation of the spatial characteristics of soil surface strength[J]. Soil Science Society of America Journal, 58(2): 284-294.
doi: 10.2136/sssaj1994.03615995005800020004x |
[19] | Frankhauser P.1998. The fractal approach: A new tool for the spatial analysis of urban agglomerations[J]. Population: An English Selection, 10(1): 205-240. |
[20] | Gordon K.2005. The mysteries of mass[J]. Scientific American, 293(1): 40-46, 48. |
[21] |
Haag G.1994. The rank-size distribution of settlements as a dynamic multifractal phenomenon[J]. Chaos, Solitons and Fractals, 4(4): 519-534.
doi: 10.1016/0960-0779(94)90063-9 |
[22] |
Haken H, Portugali J.1995. A synergetic approach to the self-organization of cities and settlements[J]. Environment and Planning B: Planning and Design, 22(1): 35-46.
doi: 10.1068/b220035 |
[23] |
He S, Wang Y.2017. Revisiting the multifractality in stock returns and its modeling implications[J]. Physica A, 467: 11-20.
doi: 10.1016/j.physa.2016.09.040 |
[24] |
Huang L S, Chen Y G.2018. A comparison between two OLS-based approaches to estimating urban multifractal parameters[J]. Fractals, 26(1): 1850019.
doi: 10.1142/S0218348X18500196 |
[25] | Ihlen E A.2012. Introduction to multifractal detrended fluctuation analysis in Matlab[J]. Frontiers in Physiology, 3: 141. |
[26] |
Kantelhardt J W, Koscielny-Bunde E, Rego H H, et al.2001. Detecting long-range correlations with detrended fluctuation analysis[J]. Physica A, 295(3): 441-454.
doi: 10.1016/S0378-4371(01)00144-3 |
[27] |
Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al.2002. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 316(1): 87-114.
doi: 10.1016/S0378-4371(02)01383-3 |
[28] | Knox P L, Marston S A.2009. Places and regions in global context: Human geography[M]. The 5th Edition. Upper Saddle River, NJ: Prentice Hall. |
[29] |
Kravchenko A N, Boast C W, Bullock D G.1999. Multifractal analysis of soil spatial variability[J]. Agronomy Journal, 91(6): 1033-1041.
doi: 10.2134/agronj1999.9161033x |
[30] | Murcio R, Masucci A P, Arcaute E, et al.2015. Multifractal to monofractal evolution of the London street network[J]. Physical Review E, 92, 062130. |
[31] | Portugali J.2000. Self-organization and the city[M]. Berlin, Germany: Springer. |
[32] |
Rozenfeld H D, Rybski D, Andrade Jr. D S, et al.2008. Laws of population growth[J]. PNAS, 105(48): 18702-18707.
doi: 10.1073/pnas.0807435105 |
[33] |
Salat H, Murcio R, Yano K, et al.2018. Uncovering inequality through multifractality of land prices: 1912 and contemporary Kyoto[J]. PLoS One, 13(4), e0196737.
doi: 10.1371/journal.pone.0196737 |
[34] |
Stanley H E, Meakin P.1988. Multifractal phenomena in physics and chemistry[J]. Nature, 335: 405-409.
doi: 10.1038/335405a0 |
[35] |
Sun X, Chen H P, Wu Z Q, et al.2001. Multifractal analysis of Hang Seng index in Hong Kong stock market[J]. Physica A, 291: 553-562.
doi: 10.1016/S0378-4371(00)00606-3 |
[36] |
Sun X, Chen H P, Yuan Y Z, et al.2001. Predictability of multifractal analysis of Hang Seng stock index in Hong Kong[J]. Physica A, 301: 473-482.
doi: 10.1016/S0378-4371(01)00433-2 |
[37] | Takayasu H.1990. Fractals in the physical sciences [M]. Manchester, UK: Manchester University Press. |
[38] |
White R, Engelen G.1993. Cellular automata and fractal urban form: A cellular modeling approach to the evolution of urban land-use patterns[J]. Environment and Planning A, 25(8): 1175-1199.
doi: 10.1068/a251175 |
[1] | 杨清可, 段学军, 王磊, 王雅竹. 长三角地区城市土地利用与生态环境效应的交互作用机制研究[J]. 地理科学进展, 2021, 40(2): 220-231. |
[2] | 钱家乘, 张佰林, 刘虹吾, 高阳, 王昭颖, 连小云. 东部旅游特色山区乡村发展分化及其驱动力——以浙江省平阳县为例[J]. 地理科学进展, 2020, 39(9): 1460-1472. |
[3] | 王成, 谢波. 土地利用视角下城市交通事故驱动机理的研究进展[J]. 地理科学进展, 2020, 39(9): 1597-1606. |
[4] | 葛玉娟, 赵宇鸾, 李秀彬. 山区耕地细碎化对土地利用集约度影响——以贵州省亚鱼村为例[J]. 地理科学进展, 2020, 39(7): 1095-1105. |
[5] | 吴孔森, 芮旸, 陈佳, 张丽琼, 杨新军, 张佰刚. 旅游驱动下乡村转型发展的微尺度研究——以西安市上王村为例[J]. 地理科学进展, 2020, 39(6): 1047-1059. |
[6] | 胡甜, 吴健生, 彭建, 李卫锋. 土地分离与共享框架的研究现状及应用拓展[J]. 地理科学进展, 2020, 39(5): 880-888. |
[7] | 胡栩, 聂勇, 徐霞, 蒋盛, 张镱锂. 塔里木盆地南缘和田地区土地利用变化的遥感研究[J]. 地理科学进展, 2020, 39(4): 577-590. |
[8] | 刘采, 张海燕, 李迁. 1980—2018年海南岛人类活动强度时空变化特征及其驱动机制[J]. 地理科学进展, 2020, 39(4): 567-576. |
[9] | 张凤, 陈彦光, 刘鹏. 京津冀城镇体系与水系结构的时空关系研究[J]. 地理科学进展, 2020, 39(3): 377-388. |
[10] | 邹利林, 刘彦随, 王永生. 中国土地利用冲突研究进展[J]. 地理科学进展, 2020, 39(2): 298-309. |
[11] | 谭荣辉, 刘耀林, 刘艳芳, 何青松. 城市增长边界研究进展——理论模型、划定方法与实效评价[J]. 地理科学进展, 2020, 39(2): 327-338. |
[12] | 付慧, 刘艳军, 孙宏日, 周国磊. 京津冀地区耕地利用转型时空分异及驱动机制[J]. 地理科学进展, 2020, 39(12): 1985-1998. |
[13] | 张涵, 李阳兵. 城郊土地利用功能演变——以贵州省惠水县乡村旅游度假区好花红村为例[J]. 地理科学进展, 2020, 39(12): 1999-2012. |
[14] | 姜凯斯,刘正佳,李裕瑞,王永生,王昱. 黄土丘陵沟壑区典型村域土地利用变化及对区域乡村转型发展的启示[J]. 地理科学进展, 2019, 38(9): 1305-1315. |
[15] | 杨奎,张宇,赵小风,文琦,钟太洋. 乡村土地利用结构效率时空特征及影响因素[J]. 地理科学进展, 2019, 38(9): 1393-1402. |
|