[1] |
陈彦光. 2008. 分形城市系统: 标度、对称和空间复杂性 [M]. 北京: 科学出版社.
|
|
[Chen Y G.2008. Fractal urban systems: Scaling, symmetry, and spatial complexity. Beijing, China: Science Press. ]
|
[2] |
陈彦光. 2015. 简单、复杂与地理分布模型的选择[J]. 地理科学进展, 34(3): 321-329.
|
|
[Chen Y G.2015. Simplicty, complexity, and mathematical modeling of geographical distributions. Progress in Geography, 34(3): 321-329. ]
|
[3] |
陈彦光. 2017. 城市形态的分维估算与分形判定[J]. 地理科学进展, 36(5): 529-539.
|
|
[Chen Y G.2017. Approaches to estimating fractal dimension and identifying fractals of urban form. Progress in Geography, 36(5): 529-539. ]
|
[4] |
陈勇, 陈嵘, 艾南山, 等. 1993. 城市规模分布的分形研究[J]. 经济地理, 13(3): 48-53.
|
|
[Chen Y, Chen R, Ai N S, et al.1993. On the fractal property of city-size distributions. Economical Geography, 13(3): 48-53. ]
|
[5] |
王放, 李后强. 1995. 非线性人口学导论 [M]. 成都: 四川大学出版社.
|
|
[Wang F, Li Q.1995. Introduction to nonlinear demography . Chengdu, China: Sichuan University Press. ]
|
[6] |
周一星. 1998. 主要经济联系方向论[J]. 城市规划, 22(2): 22-25.
|
|
[Zhou Y X.1998. Major directions of economic linkages: Some theoretical considerations. City Planning Review, 22(2): 22-25. ]
|
[7] |
朱晓华. 2007. 地理空间信息的分形与分维 [M]. 北京: 测绘出版社.
|
|
[Zhu X H.2007. Fractals and fractal dimensions of spatial geo-information . Beijing, China: Surveying and Mapping Press. ]
|
[8] |
Anselin L.1996. The moran scatterplot as an ESDA tool to assess local instability in spatial association[M]// Fischer M, Scholten H J, Unwin D. Spatial analytical perspectives on GIS. London, UK: Taylor & Francis: 111-125.
|
[9] |
Appleby S.1996. Multifractal characterization of the distribution pattern of the human population[J]. Geographical Analysis, 28(2): 147-160.
|
[10] |
Ariza-Villaverde A B, Jimenez-Hornero F J, De Rave E G.2013. Multifractal analysis of axial maps applied to the study of urban morphology[J]. Computers, Environment and Urban Systems, 38: 1-10.
doi: 10.1016/j.compenvurbsys.2012.11.001
|
[11] |
Batty M, Longley P A.1994. Fractal cities: A geometry of form and function [M]. London, UK: Academic Press.
|
[12] |
Batty M.2010. Space, scale, and scaling in entropy maximizing[J]. Geographical Analysis, 42(4): 395-421.
doi: 10.1111/j.1538-4632.2010.00800.x
|
[13] |
Benguigui L, Blumenfeld-Lieberthal E, Czamanski D.2006. The dynamics of the Tel Aviv morphology[J]. Environment and Planning B: Planning and Design, 33(2): 269-284.
doi: 10.1068/b31118
|
[14] |
Benguigui L, Daoud M.1991. Is the suburban railway system a fractal?[J]. Geographical Analysis, 23(4): 362-368.
|
[15] |
Chen Y G.2011. Derivation of the functional relations between fractal dimension and shape indices of urban form[J]. Computers, Environment and Urban Systems, 35(6): 442-451.
doi: 10.1016/j.compenvurbsys.2011.05.008
|
[16] |
Chen Y G.2012a. The rank-size scaling law and entropy-maximizing principle[J]. Physica A, 391(3): 767-778.
doi: 10.1016/j.physa.2011.07.010
|
[17] |
Chen Y G.2012b. Zipf's law, 1/f noise, and fractal hierarchy[J]. Chaos, Solitons & Fractals, 45(1): 63-73.
|
[18] |
Chen Y G.2015. The distance-decay function of geographical gravity model: Power law or exponential law?[J]. Chaos, Solitons & Fractals, 77: 174-189.
|
[19] |
Chen Y G.2016. The evolution of Zipf's law indicative of city development[J]. Physica A, 443: 555-567.
doi: 10.1016/j.physa.2015.09.083
|
[20] |
Chen Y G, Lin J Y.2009. Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals[J]. Chaos, Solitons & Fractals, 41(2): 615-629.
|
[21] |
Chen Y G, Wang J J.2013. Multifractal characterization of urban form and growth: The case of Beijing[J]. Environment and Planning B: Planning and Design, 40(5): 884-904.
doi: 10.1068/b36155
|
[22] |
Chen Y G, Zhou Y X.2003. The rank-size rule and fractal hierarchies of cities: Mathematical models and empirical analyses[J]. Environment and Planning B: Planning and Design, 30(6): 799-818.
doi: 10.1068/b2948
|
[23] |
Chen Y G, Zhou Y X.2004. Multi-fractal measures of city-size distributions based on the three-parameter Zipf model[J]. Chaos, Solitons & Fractals, 22(4): 793-805.
|
[24] |
Cheng Q.1995. The perimeter-area fractal model and its application in geology[J]. Mathematical Geology, 27(1): 69-82.
doi: 10.1007/BF02083568
|
[25] |
Couclelis H.1997. From cellular automata to urban models: New principles for model development and implementation[J]. Environment and Planning B: Planning and Design, 24(2): 165-174.
doi: 10.1068/b240165
|
[26] |
Feder J.1988. Fractals [M]. New York: Plenum Press, 1988.
|
[27] |
Frankhauser P.1994. The fractal aspects of urban structures[M]. Paris, French: Economica.
|
[28] |
Frankhauser P.1998. The fractal approach: A new tool for the spatial analysis of urban agglomerations[J]. Population: An English Selection, 10(1): 205-240.
|
[29] |
Goodchild M F, Mark D M.1987. The fractal nature of geographical phenomena[J]. Annals of Association of American Geographers, 77(2): 265-278.
doi: 10.1111/j.1467-8306.1987.tb00158.x
|
[30] |
Goodchild M F.1980. Fractals and the accuracy of geographical measures[J]. Mathematical Geology, 12(2): 85-98.
doi: 10.1007/BF01035241
|
[31] |
Goodchild M F.2004. GIScience, geography, form, and process[J]. Annals of the Association of American Geographers, 94(4): 709-714.
|
[32] |
Grassberger P.1983. Generalized dimensions of strange attractors[J]. Physics Letters A, 97(6): 227-230.
doi: 10.1016/0375-9601(83)90753-3
|
[33] |
Halsey T C, Jensen M H, Kadanoff L P, et al.1986. Fractal measure and their singularities: The characterization of strange sets[J]. Physical Review A, 33: 1141-1151.
doi: 10.1103/PhysRevA.33.1141
|
[34] |
Hentschel H E, Procaccia I.1983. The infinite number of generalized dimensions of fractals and strange attractors[J]. Physica D: Nonlinear Phenomena, 8: 435-444.
doi: 10.1016/0167-2789(83)90235-X
|
[35] |
Hurst H E, Black R P, Simaika Y M.1965. Long-term storage: An experimental study[M]. London, UK: Constable.
|
[36] |
Imre A R, Bogaert J.2004. The fractal dimension as a measure of the quality of habitat[J]. Acta Biotheoretica, 52(1): 41-56.
doi: 10.1023/B:ACBI.0000015911.56850.0f
|
[37] |
Jullien R, Botet R.1987. Aggregation and fractal aggregates [M]. Singapore: World Scientific Publishing.
|
[38] |
Lam N S-N, De Cola L.1993. Fractals in geography[M]. Englewood Cliffs, NJ: PTR Prentice Hall.
|
[39] |
Longley P A, Batty M, Shepherd J.1991. The size, shape and dimension of urban settlements[J]. Transactions of the Institute of British Geographers, 16(1): 75-94.
doi: 10.2307/622907
|
[40] |
Mandelbrot B B.1982. The fractal geometry of nature[M]. New York, USA: W. H. Freeman and Company.
|
[41] |
Murcio R, Masucci A P, Arcaute Eet al.2015. Multifractal to monofractal evolution of the London street network[J]. Physical Review E, 92: 062130. doi: 10.1103/PhysRevE. 92.062130.
|
[42] |
Stanley H E, Meakin P.1988. Multifractal phenomena in physics and chemistry[J]. Nature, 335: 405-409.
doi: 10.1038/335405a0
|
[43] |
Tobler W.2004. On the first law of geography: A reply[J]. Annals of the Association of American Geographers, 94(2): 304-310.
doi: 10.1111/j.1467-8306.2004.09402009.x
|
[44] |
Vicsek T.1989. Fractal growth phenomena [M]. Singapore: World Scientific Publishing.
|
[45] |
Wang J F, Liu X H, Peng L, et al.2012. Cities evolution tree and applications to predicting urban growth[J]. Population & Environment, 33(2-3): 186-201.
|
[46] |
White R, Engelen G.1993. Cellular automata and fractal urban form: A cellular modeling approach to the evolution of urban land-use patterns[J]. Environment and Planning A, 25(8): 1175-1199.
doi: 10.1068/a251175
|
[47] |
White R, Engelen G.1994. Urban systems dynamics and cellular automata: Fractal structures between order and chaos[J]. Chaos, Solitons & Fractals, 4(4): 563-583.
|
[48] |
Wilson A G.2000. Complex spatial systems: The modelling foundations of urban and regional analysis[M]. Singapore: Pearson Education.
|
[49] |
Wilson A G.2010. Entropy in urban and regional modelling: Retrospect and prospect[J]. Geographical Analysis, 42(4): 364-394.
doi: 10.1111/j.1538-4632.2010.00799.x
|