地理科学进展 ›› 2018, Vol. 37 ›› Issue (11): 1533-1544.doi: 10.18306/dlkxjz.2018.11.009
收稿日期:
2018-07-13
修回日期:
2018-09-30
出版日期:
2018-11-28
发布日期:
2018-11-28
通讯作者:
桑燕芳
作者简介:
作者简介:朱艳欣(1995-),女,山东临清人,硕士研究生,研究方向为水文水资源,E-mail:
基金资助:
Yanxin ZHU1,2(), Yanfang SANG1,*(
)
Received:
2018-07-13
Revised:
2018-09-30
Online:
2018-11-28
Published:
2018-11-28
Contact:
Yanfang SANG
Supported by:
摘要:
青藏高原是全球气候变化影响的敏感区域。在全球气候变暖的背景下,其水文气候过程发生了显著的变化,直接影响到区域水资源演化。然而,目前对该区域水文气候过程的时空演变规律仍认识不足。本文以青藏高原气象站点降水观测数据为基准,结合水汽通量资料,对13种不同源降水数据集质量进行对比分析;并选用质量较好的IGSNRR数据集识别了青藏高原降水季节分配特征的空间分布格局。结果表明,青藏高原东南、西南以及西北边缘地区降水集中度和集中期较小,夏季降水占全年降水比例不足50%;随着逐渐向高原腹地推进,降水集中度和集中期逐渐增大,雨季逐渐缩短且推迟,雨季降水占全年降水比例逐渐增大。降水季节分配的空间分布格局与水汽运移方向保持一致,即主要是由西风和印度洋季风的影响所致。基于此,识别出西风的影响区域主要位于高原35°N以北,印度洋季风的影响区域主要位于高原约30°N以南,而高原中部(30°N~35°N)降水受到西风和印度洋季风的共同影响。该结果有助于进一步理解和认识青藏高原水文气候过程空间差异性。
朱艳欣, 桑燕芳. 青藏高原降水季节分配的空间变化特征[J]. 地理科学进展, 2018, 37(11): 1533-1544.
Yanxin ZHU, Yanfang SANG. Spatial variability in the seasonal distribution of precipitation on the Tibetan Plateau[J]. PROGRESS IN GEOGRAPHY, 2018, 37(11): 1533-1544.
表1
本文选取的各降水数据集基本情况"
数据集名称 | 时间分辨率 | 空间分辨率 | 时间跨度 | 数据集描述 | 备注 |
---|---|---|---|---|---|
观测数据 | 月降水 | 站点 | 1979-2010 | 中国气象站点降水观测数据 | http://data.cma.cn/ |
APHRODITE | 日降水 | 0.25°×0.25° | 1951-2007 | 利用亚洲地区雨量站观测数据生成的格点降水数据 | http://www.chikyu.ac.jp/precip/products.html |
CMAP | 月降水 | 2.5°×2.5° | 1979-2017 | 融合雨量站观测数据、卫星数据和模型输出数据生成的全球降水数据 | https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html |
陈德亮 | 日降水 | 0.5°×0.5° | 1961-2010 | 哥德堡大学陈德亮主持发展的中国降水格点数据 | https://rcg.gvc.gu.se/data/ChinaPrecip/index.htm |
赵煜飞等 | 日降水 | 0.5°×0.5° | 1961-2013 | 利用中国气象站观测数据插值生成的格点降水数据 | 赵煜飞等(2015) |
CRU | 月降水 | 0.5°×0.5° | 1901-2016 | 整合全球若干个知名数据库重建的气候要素数据 | http://www.cru.uea.ac.uk/~timm/grid/CRU_TS_2_1./html |
ERA-I | 月降水 | 0.703°×0.702° | 1979-2016 | 再分析数据 | https://rda.ucar.edu/datasets/ds627.1/ |
GLDAS | 月降水 | 0.25°×0.25° | 1948-2017 | 再分析数据 | https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_V2.0/summary?keywords=GLDAS |
GPPCP | 月降水 | 2.5°×2.5° | 1979-2016 | 基于卫星数据,由雨量站观测数据校正生成的全球降水数据 | https://www.esrl.noaa.gov/psd/data/gridded/data.gpPCP.html |
JRA-55 | 月降水 | 0.562°×0.562° | 1958-2013 | 再分析数据 | https://rda.ucar.edu/datasets/ds628.1/ |
NCEP-NCAR | 月降水 | 1.875°×1.904° | 1948-2017 | 再分析数据 | https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.html |
SM | 日降水 | 0.5°×0.5° | 2007-2015 | 基于SM2RAIN算法,利用卫星土壤墒情数据生成的全球降水数据 | http://hydrology.irpi.cnr.it/download-area/sm2rain-data-sets/ |
TRMM34B3 | 月降水 | 0.25°×0.25° | 1998-2016 | 融合卫星数据和全球雨量站数据生成的全球降水数据 | https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_V7/summary?keywords=TRMM |
IGSNRR | 日降水 | 0.25°×0.25° | 1952-2012 | 利用插值后的地面监测站降水数据驱动VIC水文模型生成的中国降水数据 | Zhang et al.(2014) |
表2
13种数据集月降水过程与月降水观测过程对比结果"
R | BIAS | RMSE | ||||||
---|---|---|---|---|---|---|---|---|
均值 | 取值范围 | 均值/% | 取值范围/% | 均值 | 取值范围 | |||
APHRODITE | 0.99 | 0.83~1.00 | 16.28 | 3~118 | 7.08 | 1~63 | ||
CMAP | 0.96 | 0.38~1.00 | 45.39 | 5~406 | 14.15 | 2~96 | ||
陈德亮 | 0.98 | 0.66~1.00 | 15.83 | 3~88 | 6.92 | 0~34 | ||
赵煜飞等 | 0.98 | 0.73~1.00 | 37.63 | 4~395 | 13.58 | 3~91 | ||
CRU | 0.94 | -0.31~1.00 | 68.93 | 8~363 | 25.98 | 2~106 | ||
ERA-I | 0.95 | 0.67~0.99 | 355.59 | 65~1893 | 150.32 | 11~539 | ||
GLDAS | 0.94 | -0.37~1.00 | 68.09 | 7~330 | 26.36 | 2~127 | ||
GPCP | 0.96 | 0.28~1.00 | 70.76 | 7~430 | 23.65 | 4~88 | ||
JRA-55 | 0.93 | 0.51~0.99 | 113.90 | 14~809 | 37.98 | 5~108 | ||
NCEP-NCAR | 0.93 | 0.00~1.00 | 168.85 | 20~1435 | 58.32 | 7~150 | ||
SM | 0.90 | -0.20~1.00 | 109.15 | 22~787 | 43.95 | 1~217 | ||
TRMM | 0.96 | -0.03~1.00 | 44.43 | 5~273 | 15.22 | 2~63 | ||
IGSNRR | 0.99 | 0.87~1.00 | 22.58 | 4~159 | 10.19 | 1~60 |
表3
13种降水数据集与降水观测数据集降水季节分配分析结果对比"
数据集 | R | BIAS/% | RMSE | |||||
---|---|---|---|---|---|---|---|---|
PCD | PCP | PCD | PCP | PCD | PCP | |||
APHRODITE | 0.86 | 0.85 | 6.62 | 1.87 | 0.06 | 5.62 | ||
CMAP | 0.52 | 0.43 | 11.51 | 3.25 | 0.10 | 8.89 | ||
陈德亮 | 0.70 | 0.82 | 5.79 | 1.81 | 0.09 | 5.68 | ||
赵煜飞等 | 0.83 | 0.81 | 6.00 | 2.10 | 0.07 | 6.85 | ||
CRU | 0.46 | 0.34 | 11.63 | 3.30 | 0.11 | 9.86 | ||
ERA-I | 0.66 | 0.63 | 20.38 | 4.97 | 0.13 | 10.17 | ||
GLDAS | 0.43 | 0.31 | 11.98 | 3.32 | 0.12 | 10.22 | ||
GPPCP | 0.43 | 0.35 | 15.55 | 3.45 | 0.12 | 9.17 | ||
JRA-55 | 0.57 | 0.50 | 30.40 | 6.99 | 0.18 | 14.73 | ||
NCEP-NCAR | 0.43 | 0.44 | 15.25 | 5.29 | 0.12 | 12.24 | ||
SM | 0.47 | 0.30 | 36.30 | 3.72 | 0.20 | 10.54 | ||
TRMM | 0.64 | 0.71 | 10.89 | 2.53 | 0.10 | 7.07 | ||
IGSNRR | 0.92 | 0.92 | 4.24 | 1.41 | 0.05 | 3.89 |
[1] | 段克勤, 姚檀栋, 王宁练, 等. 2008. 青藏高原南北降水变化差异研究[J]. 冰川冻土, 30(5): 726-732. |
[Duan K Q, Yao T D, Wang N L, et al.2008. The difference in precipitation variability between the north and south Tibetan Plateaus[J]. Journal of Glaciology and Geocryology, 30(5): 726-732.] | |
[2] | 侯书贵, 秦大河, 姚檀栋, 等. 2002. 青藏高原冰芯积累量的近期变化[J]. 科学通报, 47(20): 1588-1591. |
[Hou S G, Qin D H, Yao T D, et al.2002. Recent changes in ice core accumulation in Tibet Plateau[J]. Chinese Science Bulletin, 47(20): 1588-1591.] | |
[3] |
黄浠, 王中根, 桑燕芳, 等. 2016. 雅鲁藏布江流域不同源降水数据质量对比研究[J]. 地理科学进展, 35(3): 339-348.
doi: 10.18306/dlkxjz.2016.03.008 |
[Huang X, Wang Z G, Sang Y F, et al.2016. Precision of data in three precipitation datasets of the Yarlung Zangbo River Basin[J]. Progress in Geography, 35(3): 339-348.]
doi: 10.18306/dlkxjz.2016.03.008 |
|
[4] |
黄一民, 章新平. 2007. 青藏高原四季降水变化特征分析[J]. 长江流域资源与环境, 16(4): 537-537.
doi: 10.3969/j.issn.1004-8227.2007.04.026 |
[Huang Y M, Zhang X P.2007. Character analysis in variation of seasonal precipitation over the Tibetan Plateau[J]. Resources and Environment in the Yangtze Basin, 16(4): 537-542.]
doi: 10.3969/j.issn.1004-8227.2007.04.026 |
|
[5] | 李晓英, 姚正毅, 肖建华, 等. 2016. 1961-2010年青藏高原降水时空变化特征分析[J]. 冰川冻土, 38(5): 1233-1240. |
[Li X Y, Yao Z Y, Xiao J H, et al.2016. Analysis of the spatial-temporal variation characteristics of precipitation over the Tibetan Plateau from 1961 through 2010[J]. Journal of Glaciology and Geocryology, 38(5): 1233-1240.] | |
[6] |
林厚博, 游庆龙, 焦洋, 等. 2016. 青藏高原及附近水汽输送对其夏季降水影响的分析[J]. 高原气象, 35(2):309-317.
doi: 10.7522/j.issn.1000-0534.2014.00146 |
[Lin H B, You Q L, Jiao Y, et al.2016. Water vapor rransportation and its influences on precipitation in Ssummer over Qinghai-Xizang Plateau and tts surroundings[J]. Plateau Meteorology, 35(2): 309-317.]
doi: 10.7522/j.issn.1000-0534.2014.00146 |
|
[7] | 林振耀, 赵昕奕. 1996. 青藏高原气温降水变化的空间特征[J]. 中国科学, 26(4): 354-358. |
[Lin Z Y, Zhao X Y.1996. Spatial characters of temperature and precipitation in the Tibetan Plateau[J]. Science China Press, 26(4): 354-358.] | |
[8] |
莫申国, 张百平, 程维明, 等. 2004. 青藏高原的主要环境效应[J]. 地理科学进展, 23(2): 88-96.
doi: 10.11820/dlkxjz.2004.02.011 |
[Mo S G, Zhang B P, Cheng W M, et al.2004. Major environmental effects of the Tibetan Plateau[J]. Progress in Geography, 23(2): 88-96.]
doi: 10.11820/dlkxjz.2004.02.011 |
|
[9] | 潘保田, 李吉均. 1996. 青藏高原: 全球气候变化的驱动机与放大器[J]. 兰州大学学报: 自然科学版, 32(1): 108-115. |
[Pan B T, Li J J.1996. Qinghai-Tibetan Plateau: A Driver and amplifier of the global climatic change: Ⅲ: The effects of the uplift of Qinghai-Tibetan Plateau on climatic changes[J]. Journal of Lanzhou University, 32(1): 108-115.] | |
[10] | 齐文文, 张百平, 庞宇, 等. 2013. 基于TRMM数据的青藏高原降水的空间和季节分布特征[J]. 地理科学, 33(8):999-1005. |
[Qi W W, Zhang B P, Pang Y, et al.2013. TRMM-data-based spatial and seasonal patterns of precipitation in the Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 33(8): 999-1005.] | |
[11] |
韦志刚, 黄荣辉, 董文杰. 2003. 青藏高原气温和降水的年际和年代际变化[J]. 大气科学, 27(2): 157-170.
doi: 10.3878/j.issn.1006-9895.2003.02.03 |
[Wei Z G, Huang R H, Dong W J.2003. Interannual and interdecadal variations of air temperature and precipitation over the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 27(2): 157-170.]
doi: 10.3878/j.issn.1006-9895.2003.02.03 |
|
[12] |
吴绍洪, 尹云鹤, 郑度, 等. 2005. 青藏高原近30年气候变化趋势[J]. 地理学报, 60(1): 3-11.
doi: 10.3321/j.issn:0375-5444.2005.01.001 |
[Wu S H, Yin Y H, Zheng D, et al.2005. Climate changes in the Tibetan Plateau during the last three decades[J]. Acta Geographica Sinica, 60(1):3-11.]
doi: 10.3321/j.issn:0375-5444.2005.01.001 |
|
[13] | 杨玮, 何金海, 王盘兴, 等. 2011. 近42 年来青藏高原年内降水时空不均匀性特征分析[J]. 地理学报, 66(3): 376-384. |
[Yang W, He J H, Wang P X, et al.2011. Inhomogeneity Characteristics of intra-annual precipitation over the Tibetan Plateau in recent 42 years[J]. Acta Geographica Sinica, 66(3): 376-384.] | |
[14] | 姚檀栋, 朴世龙, 沈妙根, 等. 2017. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 32(9):976-984. |
[Yao T D, Piao S L, Shen M G, et al.2017. Chained impacts on modern environment of interaction between westerlies and indian monsoon on Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 32(9): 976-984.] | |
[15] |
姚檀栋, 朱立平. 2006. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 21(5): 459-464.
doi: 10.3321/j.issn:1001-8166.2006.05.003 |
[Yao T D, Zhu L P.2006. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy[J]. Advances in Earth Science, 21(5): 459-464.]
doi: 10.3321/j.issn:1001-8166.2006.05.003 |
|
[16] | 于海英, 徐建初. 2009. 气候变化对青藏高原植被影响研究综述[J]. 生态学杂志, 28(4): 747-754. |
[Yu H Y, Xu J C.2009. Effects of climate change on vegetations on Qinghai-Tibet Plateau: A review[J]. Chinese Journal of Ecology, 28(4): 747-754.] | |
[17] | 余莲. 2011. 青藏高原地区气候变化的特征及数值模拟研究[D]. 兰州: 兰州大学. |
[Yu L.2011. Simulating study on the characteristics of climate change and over Tibet Plateau[D]. Lanzhou, China: Lanzhou University.] | |
[18] | 张丁玲. 2013. 青藏高原水资源时空变化特征的研究[D]. 兰州大学. |
[Zhang D L.2013. The temporal and spatial variations of water resources over the Tibetan Plateau[D]. Lanzhou University.] | |
[19] |
张录军, 钱永甫. 2004. 长江流域汛期降水集中程度和洪涝关系研究[J]. 地球物理学报, 47(4): 622-630.
doi: 10.3321/j.issn:0001-5733.2004.04.012 |
[Zhang L J, Qian Y F.2004. A study on the feature of precipitation concentration and its relation to flood-producing in the Yangtze River Valley of China[J]. Chinese Journal of Geophysics, 47(4): 622-630.]
doi: 10.3321/j.issn:0001-5733.2004.04.012 |
|
[20] |
赵煜飞, 朱江. 2015. 近50 年中国降水格点日值数据集精度及评估[J]. 高原气象, 34(1): 50-58.
doi: 10.7522/j.issn.1000-0534.2013.00141 |
[Zhao Y F, Zhu J.2015. Assessing quality of grid daily precipitation datasets in china in recent 50 years[J]. Plateau Meteorology, 34(1): 50-58.]
doi: 10.7522/j.issn.1000-0534.2013.00141 |
|
[21] |
Chen B, Xu X D, Yang S, et al.2012. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau[J]. Theoretical and Applied Climatology, 110(3): 423-435.
doi: 10.1007/s00704-012-0641-y |
[22] |
Curio J, Scherer D.2016. Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau[J]. Earth System Dynamics, 7(3): 767-782.
doi: 10.5194/esd-7-767-2016 |
[23] |
Feng L, Zhou T J.2012. Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis[J]. Journal of Geophysical Research: Atmospheres, 117(D20114): 1-16.
doi: 10.1029/2011JD017012 |
[24] |
Lei Y, Yang K, Wang B, et al.2014. Response of inland lake dynamics over the Tibetan Plateau to climate change[J]. Climatic Change, 125(2): 281-290.
doi: 10.1007/s10584-014-1175-3 |
[25] |
Li L, Li J, Yao X, et al.2014. Changes of the three holy lakes in recent years and quantitative analysis of the influencing factors[J]. Quaternary International, 349: 339-345.
doi: 10.1016/j.quaint.2014.04.051 |
[26] | Maussion F, Scherer D, Mölg T, et al.2013. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis[J]. Journal of Climate, 27(5): 1910-1927. |
[27] |
Sang Y F, Singh V P, Gong T L, et al.2016. Precipitation variability and response to changing climatic condition in the Yarlung Tsangpo River basin, China[J]. Journal of Geophysical Research: Atmospheres, 121(15): 8820-8831.
doi: 10.1002/2016JD025370 |
[28] |
Schiemann R, Lüthi D, Schär C.2009. Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region[J]. Journal of Climate, 22(11): 2940-2957.
doi: 10.1175/2008JCLI2625.1 |
[29] |
Shen M G, Piao S L, Cong N, et al.2015. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J]. Global Change Biology, 21(10): 3647-3656.
doi: 10.1111/gcb.12961 pmid: 25926356 |
[30] |
Shi Y F.2002. Characteristics of late quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia[J]. Quaternary International, 97: 79-91.
doi: 10.1016/S1040-6182(02)00053-8 |
[31] |
Song C, Huang B, Ke L, et al.2014. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts[J]. Journal of Hydrology, 514: 131-144.
doi: 10.1016/j.jhydrol.2014.04.018 |
[32] |
Wang A, Zeng X.2012. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 117(D05102): 1-12.
doi: 10.1029/2011JD016553 |
[33] |
Webster P J, Magaña V O, Palmer T N, et al.1998. Monsoons: Processes, predictability, and the prospects for prediction[J]. Journal of Geophysical Research: Oceans, 103(C7): 14451-14510.
doi: 10.1029/97JC02719 |
[34] |
Xiang L, Wang H, Steffen H, et al.2016. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data[J]. Earth and Planetary Science Letters, 449: 228-239.
doi: 10.1016/j.epsl.2016.06.002 |
[35] |
Xu X, Lu C, Shi X, et al.2008. World water tower: An atmospheric perspective[J]. Geophysical Research Letters, 35(20): 525-530.
doi: 10.1029/2008GL035867 |
[36] |
Xu Z X, Gong T L, Li J Y.2008. Decadal trend of climate in the Tibetan Plateau: Regional temperature and precipitation[J]. Hydrological Processes, 22(16): 3056-3065.
doi: 10.1002/hyp.6892 |
[37] |
Yao T D, Masson-Delmotte V, Gao J, et al.2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 51(4): 525-548.
doi: 10.1002/rog.20023 |
[38] |
Yao T D, Thompson L, Yang W, et al.2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2(9): 663-667.
doi: 10.1038/nclimate1580 |
[39] | Zhang L J, Qian Y F.2003. Annual distribution features of the yearly precipitation in China and their interannual variations[J]. Acta Meteorologica Sinica, 17(2): 146-163. |
[40] |
Zhang X J, Tang Q, Pan M, et al.2014. A Long-term land surface hydrologic fluxes and states dataset for China[J]. Journal of Hydrometeorology, 15(5): 2067-2084.
doi: 10.1175/JHM-D-13-0170.1 |
[1] | 张灵, 张俊, 杜良敏, 高雅琦. 长江上游降水对三峡水库蓄水关键月入库流量的影响[J]. 地理科学进展, 2020, 39(7): 1117-1125. |
[2] | 孙赫, 苏凤阁. 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J]. 地理科学进展, 2020, 39(7): 1126-1139. |
[3] | 陈瑞, 杨梅学, 万国宁, 王学佳. 基于水热变化的青藏高原土壤冻融过程研究进展[J]. 地理科学进展, 2020, 39(11): 1944-1958. |
[4] | 王婧, 李海蓉, 杨林生. 青藏高原大骨节病流行区环境、食物及人群硒水平研究[J]. 地理科学进展, 2020, 39(10): 1677-1686. |
[5] | 石晓雪, 龚道溢, 胡毅鸿. 1979—2017年冬半年京津冀区域大风的变化及其环流背景分析[J]. 地理科学进展, 2019, 38(7): 1069-1079. |
[6] | 周玉科. 青藏高原植被NDVI对气候因子响应的格兰杰效应分析[J]. 地理科学进展, 2019, 38(5): 718-730. |
[7] | 徐明, 石玉立, 王彬. 高分辨率青藏高原历史月降水数据重建[J]. 地理科学进展, 2018, 37(7): 923-932. |
[8] | 张芳芳, 郑永宏, 潘国艳, 袁帅, 孔繁希, 起永东, 王丹. 神农架地区树轮δ18O序列的气候指示意义[J]. 地理科学进展, 2018, 37(7): 946-953. |
[9] | 吉振明. 青藏高原黑碳气溶胶外源传输及气候效应模拟研究进展与展望[J]. 地理科学进展, 2018, 37(4): 465-475. |
[10] | 朱燕, 侯光良, 兰措卓玛, 高靖易, 庞龙辉. 基于GIS的青藏高原史前交通路线与分区分析[J]. 地理科学进展, 2018, 37(3): 438-449. |
[11] | 张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37(2): 214-223. |
[12] | 温小洁, 姚顺波, 赵敏娟. 基于降水条件的城镇化与植被覆盖协调发展研究[J]. 地理科学进展, 2018, 37(10): 1352-1361. |
[13] | 郭禹含, 王中根, 伍玉良. 多源再分析降水数据在拉萨河流域应用对比研究[J]. 地理科学进展, 2017, 36(8): 1033-1039. |
[14] | 刘翀, 朱立平, 王君波, 乔宝晋, 鞠建廷, 黄磊. 基于MODIS的青藏高原湖泊透明度遥感反演[J]. 地理科学进展, 2017, 36(5): 597-609. |
[15] | 王婷. 2009-2015年国际青藏高原研究文献计量分析——基于SCIE和ESI数据[J]. 地理科学进展, 2017, 36(4): 500-512. |
|