地理科学进展 ›› 2018, Vol. 37 ›› Issue (11): 1463-1472.doi: 10.18306/dlkxjz.2018.11.003
左秀玲1,2,3(), 苏奋振1,*(
), 赵焕庭4, 方月1, 杨娟1
收稿日期:
2016-10-09
修回日期:
2017-07-09
出版日期:
2018-11-28
发布日期:
2018-11-28
通讯作者:
苏奋振
E-mail:zuoxl@lreis.ac.cn;sufz@lreis.ac.cn
作者简介:
作者简介:左秀玲(1986-),女,山东济南人,博士,讲师,从事海洋海岸带资源环境遥感与GIS研究,E-mail:
基金资助:
Xiuling ZUO1,2,3(), Fenzhen SU1,*(
), Huanting ZHAO4, Yue FANG1, Juan YANG1
Received:
2016-10-09
Revised:
2017-07-09
Online:
2018-11-28
Published:
2018-11-28
Contact:
Fenzhen SU
E-mail:zuoxl@lreis.ac.cn;sufz@lreis.ac.cn
Supported by:
摘要:
珊瑚礁遥感地貌分类体系在珊瑚礁遥感地貌制图中具有重要的指导作用。目前,珊瑚礁遥感地貌分类体系仍存在构建标准不统一、部分重要地貌类型不突出以及涵盖地貌类型不完备等问题,影响了珊瑚礁遥感地貌制图应用于珊瑚礁科学和管理。本文采用中国南海46个珊瑚礁(环礁、台礁)的高分辨率遥感影像(WorldView-2、Quickbird),并结合西沙群岛15个岛礁的地貌实地调查数据进行南海高分辨率遥感地貌分类体系的构建研究。以各地貌类型所处礁体位置、动力特征、出露程度和沉积类型为划分标准,将相似尺度和重要性相当的地貌类型归为同等级别,共构建了3级19类南海珊瑚礁遥感地貌分类体系。该分类体系划分标准统一、地貌类型数量最多且完备,新命名了内礁坪生物稀疏带、内礁坪生物丛生带,补充了水下礁脊、潮间带浅滩、浅水礁塘等地貌类型,便于直观理解和推断不同尺度的海洋生态相互作用及重要性。同时,其多等级多尺度性适用于分辨率由低到高的南海珊瑚礁遥感地貌制图,有助于珊瑚礁态势演变分析、管理和保护,为维护国家海洋权益作出应有的贡献。
左秀玲, 苏奋振, 赵焕庭, 方月, 杨娟. 南海珊瑚礁高分辨率遥感地貌分类体系研究[J]. 地理科学进展, 2018, 37(11): 1463-1472.
Xiuling ZUO, Fenzhen SU, Huanting ZHAO, Yue FANG, Juan YANG. Development of a geomorphic classification scheme for coral reefs in the South China Sea based on high-resolution satellite images[J]. PROGRESS IN GEOGRAPHY, 2018, 37(11): 1463-1472.
表1
实地调查和高分辨率遥感影像构建的地貌分类体系"
地貌体系 | 文献 | 等级 | 指标 | 类型 |
---|---|---|---|---|
实地调查 | Goreau, 1959 | 2级 | 一级:所处礁体位置、动力环境;二级:所处礁体位置、动力环境、生境 | 礁后:海岸带、潟湖;礁脊:邻近潟湖带、礁坪、波浪带、贫瘠带、混合带、扶壁带;向海坡:礁前、礁前斜坡、深礁前带,共11类。 |
Robert等, 1973 | 1级 | 所处礁体位置、动力环境、生境 | 海岸带;潟湖;礁后;礁坪;鹿角珊瑚带;贫瘠带;混合带;辐板轴孔珊瑚带;礁前斜坡带;深礁前斜坡带,共10类。 | |
曾昭璇, 1982 | 3级 | 所处礁体位置、动力环境 | 礁坡区; 礁盘区:外礁盘、堤滩、次成潟湖、沙岛区(海滩岩、沙堤带、中部洼地);潟湖区:点礁,共9类。 | |
赵焕庭等, 1992 | 2级 | 所处礁体位置、动力环境 | 向海坡:下坡、上坡;外礁坪:礁缘坡、突起带、凹凸斑带;内礁坪:礁原带、礁坑带;潟湖:潟湖坡、潟湖底、点礁,共10类。 | |
孙宗勋等, 1996; 赵焕庭等, 1996 | 2级 | 一级:所处礁体位置、动力环境;二级:所处礁体位置、动力环境、生境 | 向海坡(礁缘坡);外礁坪;礁凸起;内礁坪:珊瑚稀疏带、珊瑚丛林带、礁坑发育带;潟湖:潟湖坡、潟湖盆、点礁。礁坪上发育沙洲和灰沙岛,灰沙岛:海滩、沙堤、沙席、洼地,共14类。 | |
高分辨率 遥感影像 | Mumby等, 1999 | 2级 | 一级:所处礁体位置、动力环境;二级:所处礁体位置、动力环境、生境 | 礁后;礁脊;潮沟:低潮沟、高潮沟;礁前;陡斜坡;点礁:浓密点礁、分散点礁;潟湖层:浅潟湖层、深潟湖层,共10类。 |
Leon等, 2011 | 2级 | 一级:所处礁体位置;二级:所处礁体位置、生境 | 礁前;礁脊;礁坪:珊瑚带、砂为主的礁坪、海草床、植被沙洲;潟湖:砂为主的礁后、潟湖点礁、深潟湖;点礁,共10类。 | |
Phinn等, 2012 | 1级 | 所处礁体位置 | 礁坡;礁脊;外礁坪;内礁坪;浅潟湖;深潟湖;共6类。 | |
龚剑明等, 2014 | 2级 | 一级:所处礁体位置、动力环境、生境;二级:所处礁体位置、动力环境 | 水下礁脊;外礁坪;礁凸起带;附礁生物稀疏带;附礁生物丛生带;礁坑发育带;潟湖:潟湖坡、潟湖底;点礁;潮汐通道;沙洲;灰沙岛:海滩、沙堤、沙席、洼地,共15类。 | |
周旻曦等, 2015 | 2级 | 一级:水深条件、沉积环境;二级:生物物理作用 | 向海坡;礁前;礁坪:礁脊、槽沟、珊瑚生长带、礁坑发育带;潟湖:潟湖坡、潟湖盆、潟湖点礁;潮汐通道;暗沙/暗滩;灰沙岛:海滩、沙丘,共13类。 | |
朱海天等, 2015 | 2级 | 一级:所处礁体位置、动力环境;二级:所处礁体位置、动力环境、生境 | 参考赵焕庭(1996),获取外礁缘;外礁坪;礁突起带;内礁坪:生物稀疏带、生物密集带、礁坑发育带;潟湖:潟湖坡、潟湖盆、点礁;沙洲,共10类。 | |
Xu等, 2016 | 2级 | 一级:所处礁体位置,是否出露;二级:所处礁体位置、动力环境 | 环礁地貌分为潟湖:潟湖水体,潟湖点礁,点礁陆地;礁环:礁前,礁坪,浅台地,潮汐通道,礁环陆地,封闭潟湖;沉没环礁,共10类。 |
表2
南海46个珊瑚礁的类型及分布"
环礁 | 台礁 | |
---|---|---|
西沙群岛 | 永兴岛、中建岛、琛航岛、甘泉岛 | |
东沙群岛 | 东沙岛 | |
中沙群岛 | 黄岩岛 | |
南沙群岛 | 奈罗礁(越占)、渚碧礁、铁峙礁、双黄沙洲(菲占)、南薰礁、舶兰礁(越占)、赤瓜礁、鬼喊礁(越占)、东门礁、西门礁、安乐礁、牛轭礁、华阳礁、东礁(越占)、西礁(越占)、中礁(越占)、仁爱礁(菲占)、司令礁(菲占)、永暑礁、美济礁、弹丸礁(马占)、毕生礁(越占)、柏礁(越占)、光星仔礁(马占)、簸箕礁(马占)、半月礁 | 北子岛(菲占)、南子岛(越占)、中业岛(菲占)、南钥岛(菲占)、太平岛、鸿庥岛(越占)、敦谦沙洲(越占)、染青沙洲(越占)、景宏岛(越占)、西月岛(菲占)、费信岛(菲占)、马欢岛(菲占)、南威岛(越占)、安波沙洲(越占) |
表4
南海珊瑚礁高分辨率遥感地貌分类体系"
1级 | 2级 | 3级 | 说明 | 形态 | 动力 特征 | 出露 程度 | 沉积 类型 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
代码 | 地貌 | 代码 | 地貌 | 代码 | 地貌-生物 | ||||||||
1 | 水下礁脊 | 大环礁不出露礁坪 | 低潮不出露 | 繁生珊瑚和钙藻等造礁生物以及贝类 | |||||||||
2 | 礁前斜坡(向海坡) | 2.1 | 礁前斜坡下坡 | 大于700~900 m, 坡度稍缓 | 切割起伏型 | ||||||||
2.2 | 礁前斜坡上坡 | 700~900 m以内, 较陡 | 平直型 | ||||||||||
3 | 礁坪 | 3.1 | 外礁坪 | 槽沟发育带 | 高波 能带 | 低潮几乎 全部干出 | 覆盖大量生物碎屑物,珊瑚生长较差 | ||||||
3.2 | 礁凸起带 | 海藻脊,无活珊瑚 | 低潮完全 干出 | 珊瑚藻,生物碎屑多为砾石 | |||||||||
3.3 内礁坪 | 3.3.1 | 生物稀 疏带 | 稀疏的珊瑚、附礁生物 | 低波 能带 | 薄层海水 | 积水洼地底部堆积松散的厚约1 cm的生物砂屑 | |||||||
3.3.2 | 潮间带 浅滩 | 无珊瑚等生物, 砂砾混合堆积物 | 丘状或条 带状 | 低潮出露 | 白色的生物质砂砾混合 堆积 | ||||||||
3.3.3 | 生物丛 生带 | 抗浪性差的珊瑚和附礁生物茂盛 | 低潮不出露 | 粗砂、细砂等生物碎屑 | |||||||||
3.3.4 | 礁坑发 育带 | 深而大的礁坑, 坑壁繁生珊瑚 | 起伏最大 | 低潮不出露 | 几厘米的白色生物砂、含生物砾块 | ||||||||
4 | 潟湖 | 4.1 | 潟湖坡 | 水深较浅 | 低潮不出露 | 生物碎屑物以粗砂为主 | |||||||
4.2 | 潟湖底 | 低潮不出露 | 生物碎屑物主要是中细砂、粉砂质砂 | ||||||||||
4.3 | 点礁 | 潟湖底或潟湖坡上 | 峰丘型 | 低潮不出露 | |||||||||
礁坪型 | 低潮出露 | ||||||||||||
4.4 | 潮汐 通道 | 即口门,流急 | 直通式 | 高波 能带 | 一般无碎屑沉积物 | ||||||||
门槛式 | |||||||||||||
5 | 浅水礁塘 | 礁坪上常积水的低洼地 | 低潮不出露 | 生物质的砂砾为主 | |||||||||
6 | 沙洲 | 没有或很少植物 | 不稳定 | 高潮出露 | 松散的珊瑚砂砾、贝壳碎屑和其他生物碎屑 | ||||||||
7 | 灰沙岛 | 7.1 | 海滩 | 不长植物 | 潮间带 | 中砂为主,各类高潮线粗砂和砾含量较高。分选中等-差 | |||||||
7.2 | 沙堤 | 植被繁茂,有高脊 | 环状 | 高潮出露 | 粗中砂、砾石含量极少,分选中等 | ||||||||
7.3 | 沙席 | 植被优良,低地 | 粗中砂、砾石含量极少,分选中等 | ||||||||||
7.4 | 洼地 | 涉水而过,无大的 树木 | 中砂、细砂为主 |
[1] |
龚剑明, 朱国强, 杨娟, 等. 2014. 面向对象的南海珊瑚礁地貌单元提取[J]. 地球信息科学学报, 16(6): 997-1004.
doi: 10.3724/SP.J.1047.2014.00997 |
[Gong J M, Zhu G Q, Yang J, et al.2014. A study on the object-oriented model for geomorphic unit extraction of coral reefs in the South China Sea[J]. Journal of Geo-information Science, 16(6): 997-1004.]
doi: 10.3724/SP.J.1047.2014.00997 |
|
[2] | Д. В. 纳乌莫夫, 颜京松, 黄明显, 等. 1960. 海南岛珊瑚礁的主要类型[J]. 海洋与湖沼, 3(3): 157-178. |
[Haymob Д В, Yan J S, Huang M X, et al.1960. Hainandao shanhujiao de zhuyao leixing[J]. Ocenologia et Limnologia Sinica, 3(3): 157-178.] | |
[3] | 孙宗勋, 赵焕庭. 1996. 南沙群岛珊瑚礁的动力地貌特征[J]. 热带海洋, 15(2): 53-60. |
[Sun Z X, Zhao H T.1996. Features of dynamic geomorphology of coral reefs in Nansha Islands[J]. Tropic Oceanology, 15(2): 53-60.] | |
[4] | 王黎, 张永战. 2018. 九章环礁水下暗礁脊槽地貌分布与形态[J]. 第四纪研究, 38(2): 485-495. |
[Wang L, Zhang Y Z.2018. Distribution and morphological characteristics of spur and groove on submerged reefs of Jiuzhang Atoll, South China Sea[J]. Quaternary Sciences, 38(2): 485-495.] | |
[5] | 曾昭璇. 1982. 中国环礁的类型划分[J]. 海洋通报, (4): 46-53. |
[Zeng Z X.1982. Zhongguo huanjiao de leixing huafen[J]. Marine Science Bulletin, (4): 46-53.] | |
[6] | 赵焕庭. 1996.南沙群岛自然地理[M]. 北京: 科学出版社. |
[Zhao H T.1996.Physical geography of Nansha Islands[M]. Beijing, China: Science Press.] | |
[7] | 赵焕庭, 宋朝景, 朱袁智. 1992. 南沙群岛“危险地带”腹地珊瑚礁的地貌与现代沉积特征[J]. 第四纪研究, 12(4): 368-377. |
[Zhao H T, Song C J, Zhu Y Z.1992. Geomorphic and modern sedimentary features of coral reefs in the hinterland of "dangerous ground": Nansha Islands[J]. Quaternary Sciences, 12(4): 368-377.] | |
[8] | 赵焕庭, 温孝胜, 孙宗勋, 等. 1996. 南沙群岛珊瑚礁自然特征[J]. 海洋学报, 18(5): 61-70. |
[Zhao H T, Wen X S, Sun Z X, et al.1996. Nansha qundao shanhu jiao ziran tezheng[J]. Acta Oceanologica Sinica, 18(5): 61-70.] | |
[9] |
赵美霞, 姜大朋, 张乔民. 2017. 珊瑚岛的动态演变及其稳定性研究综述[J]. 热带地理, 37(5): 694-700.
doi: 10.13284/j.cnki.rddl.002988 |
[Zhao M X, Jiang D P, Zhang Q M.2017. Review on the study of coral cay dynamics and its stability[J]. Tropical Geography, 37(5): 694-700.]
doi: 10.13284/j.cnki.rddl.002988 |
|
[10] |
周旻曦, 刘永学, 李满春, 等. 2015. 多目标珊瑚岛礁地貌遥感信息提取方法: 以西沙永乐环礁为例[J]. 地理研究, 34(4): 677-690.
doi: 10.11821/dlyj201504007 |
[Zhou M X, Liu Y X, Li M C, et al.2015. Geomorphologic information extraction for multi-objective coral islands from remotely sensed imagery: A case study for Yongle Atoll, South China Sea[J]. Geographical Research, 34(4): 677-690.]
doi: 10.11821/dlyj201504007 |
|
[11] | 朱海天, 冯倩, 梁超, 等. 2015. 基于随机森林的南沙岛礁分类方法研究[C]//中国海洋学会. 中国海洋学会2015年学术论文集. 北京: 海洋出版社: 99-104. |
[Zhu H T, Feng Q, Liang C, et al.2015. Jiyu suiji senlin de Nansha daojiao fenlei fangfa yanjiu[C]//Chinese Society for Oceanography. Zhongguo haiyang xuehui 2015 nian xueshu lunwenji. Beijing, China: China Ocean Press: 99-104.] | |
[12] |
Ahmad W, Neil D T.1994. An evaluation of Landsat Thematic Mapper (TM) digital data for discriminating coral reef zonation: Heron Reef (GBR)[J]. International Journal of Remote Sensing, 15(13): 2583-2597.
doi: 10.1080/01431169408954268 |
[13] |
Andréfouët S, Guzman H M.2005. Coral reef distribution, status and geomorphology-biodiversity relationship in Kuna Yala(San Blas) archipelago, Caribbean Panama[J]. Coral Reefs, 24(1): 31-42.
doi: 10.1007/s00338-004-0444-4 |
[14] |
Andréfouët S, Kramer P, Torres-Pulliza D, et al.2003. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments[J]. Remote Sensing of Environment, 88(1): 128-143.
doi: 10.1016/j.rse.2003.04.005 |
[15] | Andréfouët S, Muller-Karger F, Robinson J, et al.2006. Global assessment of modern coral reef extent and diversity for regional science and management applications: A view from space[C]//Suzuki Y, Nakamori T, Hidaka M, et al. 2004. Proceedings of 10th international coral reef symposium. Okinawa, Japan: 1732-1745. |
[16] |
Andréfouët S, Zubia M, Payri C.2004. Mapping and biomass estimation of the invasive brown algae Turbinaria ornata (Turner) J. Agardh and Sargassum mangarevense (Grunow) Setchell on heterogeneous Tahitian coral reefs using 4-meter resolution IKONOS satellite data[J]. Coral Reefs, 23(1): 26-38.
doi: 10.1007/s00338-003-0367-5 |
[17] |
Franklin E C, Ault J S, Smith S G, et al.2003. Benthic habitat mapping in the Tortugas Region, Florida[J]. Marine Geodesy, 26(1-2): 19-34.
doi: 10.1080/01490410306706 |
[18] |
Fuentes M, Limpus C, Hamann M.2011. Vulnerability of sea turtle nesting grounds to climate change[J]. Global Change Biology, 17(1): 140-153.
doi: 10.1111/j.1365-2486.2010.02192.x |
[19] | Goldberg W M.1973. The ecology of the coral-octocoral communities off the southeast Florida coast: Geomorphology, species composition, and zonation[J]. Bulletin of Marine Science, 23(3): 465-488. |
[20] |
Goreau T F.1959. The ecology of Jamaican coral reefs I. Species composition and zonation[J]. Ecology, 40(1): 67-90.
doi: 10.2307/1929924 |
[21] |
Green E, Mumby P, Edwards A, et al.1996. A review of remote sensing for the assessment and management of tropical coastal resources[J]. Coastal Management, 24(1): 1-40.
doi: 10.1080/08920759609362279 |
[22] |
Hamylton S M, Carvalho R C, Duce S, et al.2016. Linking pattern to process in reef sediment dynamics at Lady Musgrave Island, southern Great Barrier Reef[J]. Sedimentology, 63(6): 1634-1650.
doi: 10.1111/sed.12278 |
[23] | Hochberg E J.2011. Remote sensing of coral reef processes[M]//Dubinsky Z, Stambler N. Coral reefs: An ecosystem in transition. Dordrecht, Netherland: Springer: 25-35. |
[24] | Houston M.1994.Biological diversity: The coexistence of species on changing landscapes[M]. Cambridge, UK: Cambridge University Press. |
[25] |
Kayanne H, Aoki K, Suzuki T, et al.2016. Eco-geomorphic processes that maintain a small coral reef island: Ballast Island in the Ryukyu Islands, Japan[J]. Geomorphology, 271: 84-93.
doi: 10.1016/j.geomorph.2016.07.021 |
[26] | Kinzie R A.1973. The zonation of west Indian Gorgonians[J]. Bulletin of Marine Science, 23(1): 93-155. |
[27] |
Komyakova V, Munday P L, Jones G P.2013. Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities[J]. PLos One, 8(12): e83178.
doi: 10.1371/journal.pone.0083178 pmid: 3862682 |
[28] |
Kordi M N, O'Leary M.2016. Geomorphic classification of coral reefs in the north western Australian shelf[J]. Regional Studies in Marine Science, 7: 100-110.
doi: 10.1016/j.rsma.2016.05.012 |
[29] |
Leon J, Woodroffe C D.2011. Improving the synoptic mapping of coral reef geomorphology using object-based image analysis[J]. International Journal of Geographical Information Science, 25(6): 949-969.
doi: 10.1080/13658816.2010.513980 |
[30] |
Loya Y.1972. Community structure and species diversity of hermatypic corals at Eilat, Red Sea[J]. Marine Biology, 13(2): 100-123.
doi: 10.1007/BF00366561 |
[31] | Maeder J, Narumalani S, Rundquist D C, et al.2002. Classifying and mapping general coral-reef structure using IKONOS data[J]. Photogrammetric Engineering and Remote Sensing, 68(12): 1297-1305. |
[32] |
Mumby P J, Edwards A J.2002. Mapping marine environments with IKONOS imagery: Enhanced spatial resolution can deliver greater thematic accuracy[J]. Remote Sensing of Environment, 82(2): 248-257.
doi: 10.1016/S0034-4257(02)00041-X |
[33] |
Mumby P J, Harborne A R.1999. Development of a systematic classification scheme of marine habitats to facilitate regional management and mapping of Caribbean coral reefs[J]. Biological Conservation, 88(2): 155-163.
doi: 10.1016/S0006-3207(98)00108-6 |
[34] |
Mumby P J, Skirving W, Strong A E, et al.2004. Remote sensing of coral reefs and their physical environment[J]. Marine Pollution Bulletin, 48(3): 219-228.
doi: 10.1016/j.marpolbul.2003.10.031 pmid: 14972573 |
[35] |
Munday P.2002. Does habitat availability determine geographical-scale abundances of coral-dwelling fishes?[J]. Coral Reefs, 21(1): 105-116.
doi: 10.1007/s00338-001-0200-y |
[36] |
Naseer A, Hatcher B G.2004. Inventory of the Maldives’ coral reefs using morphometrics generated from Landsat ETM+ imagery[J]. Coral Reefs, 23(1): 161-168.
doi: 10.1007/s00338-003-0366-6 |
[37] |
Perry C T, Kench P S, Smithers S G, et al.2011. Implications of reef ecosystem change for the stability and maintenance of coral reef islands[J]. Global Change Biology, 17(12): 3679-3696.
doi: 10.1111/j.1365-2486.2011.02523.x |
[38] |
Phinn S R, Roelfsema C M, Mumby P J.2012. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs[J]. International Journal of Remote Sensing, 33(12): 3768-3797.
doi: 10.1080/01431161.2011.633122 |
[39] |
Pratchett M S, Wilson S K, Baird A H.2006. Declines in the abundance of Chaetodon butterflyfishes following extensive coral depletion[J]. Journal of Fish Biology, 69(5): 1269-1280.
doi: 10.1111/j.1095-8649.2006.01161.x |
[40] |
Roelfsema C, Kovacs E, Ortiz J C, et al.2018. Coral reef habitat mapping: A combination of object-based image analysis and ecological modelling[J]. Remote Sensing of Environment, 208: 27-41.
doi: 10.1016/j.rse.2018.02.005 |
[41] |
Roy P, Connell J.1991. Climatic change and the future of atoll states[J]. Journal of Coastal Research, 7(4): 1057-1075.
doi: 10.1007/s00776-011-0078-7 |
[42] |
Shen J, Johnson M E, Fu F, et al.2018. Seasonal wind patterns influence the configuration and geomorphology of insular reef systems: Yongxing Island, Xisha Islands, China[J]. Geological Journal, 53: 754-766.
doi: 10.1002/gj.2925 |
[43] |
Xu J P, Zhao J, Li F, et al.2016. Object-based image analysis for mapping geomorphic zones of coral reefs in the Xisha Islands, China[J]. Acta Oceanologica Sinica, 35(12): 19-27.
doi: 10.1007/s13131-016-0921-y |
[44] |
Zuo X L, Su F Z, Zhao H T, et al.2017. Regional hard coral distribution within geomorphic and reef flat ecological zones determined by satellite imagery of the Xisha Islands, South China Sea[J]. Chinese Journal of Oceanology and Limnology, 35(3): 501-514.
doi: 10.1007/s00343-017-5336-x |
[1] | 姜凯斯,刘正佳,李裕瑞,王永生,王昱. 黄土丘陵沟壑区典型村域土地利用变化及对区域乡村转型发展的启示[J]. 地理科学进展, 2019, 38(9): 1305-1315. |
[2] | 段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8): 1182-1195. |
[3] | 马明国,汤旭光,韩旭军,时伟宇,宋立生,黄静. 西南岩溶地区碳循环观测与模拟研究进展和展望[J]. 地理科学进展, 2019, 38(8): 1196-1205. |
[4] | 陈颖彪, 郑子豪, 吴志峰, 千庆兰. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展, 2019, 38(2): 205-223. |
[5] | 张芳芳, 郑永宏, 潘国艳, 袁帅, 孔繁希, 起永东, 王丹. 神农架地区树轮δ18O序列的气候指示意义[J]. 地理科学进展, 2018, 37(7): 946-953. |
[6] | 张洪源, 吴艳红, 刘衍君, 郭立男. 近20年青海湖水量变化遥感分析[J]. 地理科学进展, 2018, 37(6): 823-832. |
[7] | 赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018, 37(2): 198-213. |
[8] | 张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37(2): 214-223. |
[9] | 林珲, 张鸿生, 林殷怡, 魏姗, 吴志峰. 基于城市不透水面—人口关联的粤港澳大湾区人口密度时空分异规律与特征[J]. 地理科学进展, 2018, 37(12): 1644-1652. |
[10] | 李弘毅, 刘永学, 张思宇, 孙超, 孙佳琪. 地理信息技术支撑下的南海岛礁资源环境研究进展与展望[J]. 地理科学进展, 2018, 37(11): 1454-1462. |
[11] | 张震, 刘时银, 魏俊锋, 蒋宗立. 东帕米尔高原昆盖山跃动冰川遥感监测研究[J]. 地理科学进展, 2018, 37(11): 1545-1554. |
[12] | 张君珏, 苏奋振, 王雯玥. 南海资源环境地理研究综述[J]. 地理科学进展, 2018, 37(11): 1443-1453. |
[13] | 史舟, 徐冬云, 滕洪芬, 胡月明, 潘贤章, 张甘霖. 土壤星地传感技术现状与发展趋势[J]. 地理科学进展, 2018, 37(1): 79-92. |
[14] | 鹿化煜. 试论地貌学的新进展和趋势[J]. 地理科学进展, 2018, 37(1): 8-15. |
[15] | 洪长桥, 金晓斌, 陈昌春, 王慎敏, 杨绪红, 项晓敏. 集成遥感数据的陆地净初级生产力估算模型研究综述[J]. 地理科学进展, 2017, 36(8): 924-939. |
|