地理科学进展 ›› 2018, Vol. 37 ›› Issue (9): 1159-1170.doi: 10.18306/dlkxjz.2018.09.001
• 研究综述 • 下一篇
王平1,*(), 张学静1,2, 王田野1,2, POZDNIAKOV Sergey P3
收稿日期:
2018-03-29
修回日期:
2018-06-25
出版日期:
2018-09-28
发布日期:
2018-09-28
通讯作者:
王平
作者简介:
作者简介:王平(1979-),男,安徽肥西人,副研,主要从事干旱区地下水与生态水文过程研究,E-mail:
基金资助:
Ping WANG1,*(), Xuejing ZHANG1,2, Tianye WANG1,2, Sergey P POZDNIAKOV3
Received:
2018-03-29
Revised:
2018-06-25
Online:
2018-09-28
Published:
2018-09-28
Contact:
Ping WANG
Supported by:
摘要:
日尺度上的地下水位波动是干旱区地下水依赖型植物蒸散消耗地下水的直接证据与指示。White通过分析日尺度地下水位波动与植被蒸散之间的关系,提出了利用地下水位观测数据来计算植被蒸散速率的方法,简称White法。该方法由于计算简单,所需数据少,在干旱区河岸林蒸散定量方面得到了广泛的应用。本文通过系统回顾White法的提出、“四大假设条件”及其在实际应用中的不足,梳理了近年来对White法不断修订的总体思路,总结了各种形式White法的特点、使用条件以及存在的主要问题;在此基础上,提出了White法进一步改进的方向。当前,结合地表蒸散发的多尺度观测与模拟,White法不仅可以用来估算区域尺度地下水蒸散,而且能够为定量解析干旱区植物的水分利用来源提供验证与参考。
王平, 张学静, 王田野, POZDNIAKOV Sergey P. 估算干旱区地下水依赖型植物蒸散发的White法评述[J]. 地理科学进展, 2018, 37(9): 1159-1170.
Ping WANG, Xuejing ZHANG, Tianye WANG, Sergey P POZDNIAKOV. A review of the White method for the estimation of evapotranspiration from phreatophytes in arid areas[J]. PROGRESS IN GEOGRAPHY, 2018, 37(9): 1159-1170.
表1
White法的重要发展阶段及主要贡献"
引用文献 | 主要贡献 |
---|---|
Blaney等(1930) | 观测发现夜间8点至清晨8点的蒸散量小于日蒸散总量的6%,尤其午夜至凌晨植被蒸散微弱,为White法“四点假设”的提出提供依据 |
White (1932) | 提出了基于地下水位波动日过程的植被蒸散估算方法(即White法)及其“四点假设” |
Troxell (1936) | 指出White法四点假设之一的“地下水补给速率在日尺度上恒定”并不成立,并由此导致White法所估算的植被蒸散存在一定误差 |
Haise等(1950) | 观测到植被蒸散同样引起土壤水分的昼夜波动,为后来改进White法以及利用土壤水日波动信息来估算植被蒸散提供基础 |
Klinker等(1964) | 观测到河水位与地下水位的昼夜变化具有同步性,为后来利用河水位日波动数据进行河岸林蒸散估算提供基础 |
Meyboom (1965) | 提出采用“速效给水度(readily available specific yield)”来替代White法计算公式中的给水度,并建议速效给水度的取值为传统给水度的一半 |
Reigner (1966) | 发展了基于河流水位昼夜波动信息的河岸林蒸散估算方法 |
Gerla (1992) | 通过确定日尺度上的水位下降与补给速率来估算湿地生态系统蒸散量 |
Hays (2003) | 根据地下水位3个特征值,将水位变化日过程划分为两个时段,并分时段求解地下水消耗速率与补给速率,降低了White法计算的不确定性 |
Engel等(2005) | 运用地下水位叠加原理,通过引入区域地下水位变化(Δzref)一项,对White法进行改进 |
Nachabe等(2005) | 基于White法基本原理,通过计算日尺度上的土壤剖面含水量变化来估算植被蒸散量 |
Schilling (2007) | 观测发现草地生态系统覆盖下的地下水位昼夜波动呈阶梯状(stepped pattern),提出了该模式下的草地蒸散估算方法 |
Gribovszki等(2008) | 考虑地下水补给速率在小时尺度上的变化,改进White法,并满足小时尺度上的植被蒸散估算 |
Loheide (2008) | 引入地下水位变化去趋势分析法,改进White法,允许计算小时尺度上的地下水位变化速率 |
Soylu等(2012) | 引入傅立叶变换,建立植被蒸散与地下水位波动振幅之间的线性关系 |
李洪波等(2012) | 通过计算相邻两天地下水位恢复的平均速率来确定White法计算公式中的地下水净补给量 |
Yin等(2013) | 利用小时尺度的水位变化来代替White法计算公式中的日尺度地下水位净变化量 |
Wang, Pozdniakov (2014) | 在Soylu等(2012)改进的基础上,通过建立地下水位日变化统计方差与植被蒸散之间的数学关系来估算植被蒸散 |
Wang, Grinevsky等(2014) | 引入地下水位叠加原理,提出了White法形式的季节性地下水位波动法,用于计算生长季植被蒸散量 |
[1] | 井家林. 2014. 极端干旱区绿洲胡杨根系空间分布特征及其构型研究[D]. 北京: 北京林业大学. |
[Jin J L.2014. Research on the root system distribution and architecture of Populus euphratica in the extremely arid region[D]. Beijing, China: Beijing Forestry University.] | |
[2] | 李洪波, 侯光才, 尹立河, 等. 2012. 基于改进White方法的地下水蒸散发研究[J]. 地质通报, 31(6): 989-993. |
[Li H B, Hou G C, Yin L H, et al.2012. Using the improved White method to quantify groundwater evapotranspiration[J]. Geological Bulletin of China, 31(6): 989-993 .] | |
[3] | 夏延国, 董芳宇, 吕爽, 等. 2015. 极端干旱区胡杨细根的垂直分布和季节动态[J]. 北京林业大学学报, 37(7): 37-44. |
[Xia Y G, Dong F Y, Lv S, et al.2015. Vertical distribution and seasonal dynamics of fine roots in Populus euphratica plantation in the extremely drought area[J]. Journal of Beijing Forestry University, 37(7): 37-44.] | |
[4] | 徐贵青, 李彦. 2009. 共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J]. 生态学报, 29(1): 130-137. |
[Xu G Q, Li Y.2009. Roots distribution of three desert shrubs and their response to precipitation under co-occurring conditions[J]. Acta Ecologica Sinica, 29(1): 130-137.] | |
[5] |
许皓, 李彦, 谢静霞, 等. 2010. 光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响[J]. 植物生态学报, 34(4): 375-386.
doi: 10.3773/j.issn.1005-264x.2010.04.003 |
[Xu H, Li Y, Xie J X, et al.2010. Influence of solar radiation and groundwater table on carbon balance of phreatophytic desert shrub Tamarix[J]. Chinese Journal of Plant Ecology, 34(4): 375-386.]
doi: 10.3773/j.issn.1005-264x.2010.04.003 |
|
[6] | Acharya S, Jawitz J W, Mylavarapu R S.2012. Analytical expressions for drainable and fillable porosity of phreatic aquifers under vertical fluxes from evapotranspiration and recharge[J]. Water Resources Research, 48(11): W11526. |
[7] | Acharya S, Mylavarapu R, Jawitz J.2014. Evapotranspiration estimation from diurnal water table fluctuations: Implementing drainable and fillable porosity in the White method[J]. Vadose Zone Journal, 13(9): 121-150. |
[8] |
Beamer J P, Huntington J L, Morton C G, et al.2013. Estimating annual groundwater evapotranspiration from phreatophytes in the great basin using landsat and flux tower measurements[J]. Journal of the American Water Resources Association, 49(3): 518-533.
doi: 10.1111/jawr.12058 |
[9] | Blaney H F, Taylor C A, Young A A.1930. Rainfall penetration and consumptive use of water in the Santa Ana River Valley and Coastal Plain[R]. California Department of Public Works: Division of Water Resorces, Bulletin, No.33. |
[10] | Butler J J, Kluitenberg G J, Whittemore D O, et al.2007. A field investigation of phreatophyte-induced fluctuations in the water table[J]. Water Resources Research, 43(2): W02404. |
[11] | Carling G T, Mayo A L, Tingey D, et al.2012. Mechanisms, timing, and rates of arid region mountain front recharge[J]. Journal of Hydrology, 428-429(4): 15-31. |
[12] |
Chen X H, Song J X, Wang W K.2010. Spatial variability of specific yield and vertical hydraulic conductivity in a highly permeable alluvial aquifer[J]. Journal of Hydrology, 388(3-4): 379-388.
doi: 10.1016/j.jhydrol.2010.05.017 |
[13] |
Chen Y N, Pang Z H, Chen Y P, et al.2008. Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China[J]. Hydrogeology Journal, 16(7): 1371-1379.
doi: 10.1007/s10040-008-0306-1 |
[14] |
Cheng D H, Li Y, Chen X H, et al.2013. Estimation of groundwater evaportranspiration using diurnal water table fluctuations in the Mu Us Desert, northern China[J]. Journal of Hydrology, 490(20): 106-113.
doi: 10.1016/j.jhydrol.2013.03.027 |
[15] |
Cleverly J R, Dahm C N, Thibault J R, et al.2006. Riparian ecohydrology: Regulation of water flux from the ground to the atmosphere in the Middle Rio Grande, New Mexico[J]. Hydrological Processes, 20(15): 3207-3225.
doi: 10.1002/(ISSN)1099-1085 |
[16] | Crosbie R S, Binning P, Kalma J D.2005. A time series approach to inferring groundwater recharge using the water table fluctuation method[J]. Water Resources Research, 41(1): W01008. |
[17] | Cuthbert M O.2010. An improved time series approach for estimating groundwater recharge from groundwater level fluctuations[J]. Water Resources Research, 46(9): W09515. |
[18] |
Dawson T E.1993. Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions[J]. Oecologia, 95(4): 565-574.
doi: 10.1007/BF00317442 |
[19] |
Dolan T J, Hermann A J, Bayley S E, et al.1984. Evapotranspiration of a Florida, U.S.A., freshwater wetland[J]. Journal of Hydrology, 74(3-4): 355-371.
doi: 10.1016/0022-1694(84)90024-6 |
[20] |
Duke H.1972. Capillary properties of soils - influence upon specific yield[J]. Transactions of the ASAE, 15(4): 688-691.
doi: 10.13031/2013.37986 |
[21] |
Eamus D, Zolfaghar S, Villalobos-Vega R, et al.2015. Groundwater-dependent ecosystems: Recent insights from satellite and field-based studies[J]. Hydrology and Earth System Sciences, 19(10): 4229-4256.
doi: 10.5194/hess-19-4229-2015 |
[22] |
Elmore A J, Manning S J, Mustard J F, et al.2006. Decline in alkali meadow vegetation cover in California: The effects of groundwater extraction and drought[J]. Journal of Applied Ecology, 43(4): 770-779.
doi: 10.1111/j.1365-2664.2006.01197.x |
[23] | Engel V, Jobbágy E G, Stieglitz M, et al.2005. Hydrological consequences of Eucalyptus afforestation in the Argentine Pampas[J]. Water Resources Research, 41(10): W10409. |
[24] |
Fahle M, Dietrich O.2014. Estimation of evapotranspiration using diurnal groundwater level fluctuations: Comparison of different approaches with groundwater lysimeter data[J]. Water Resources Research, 50(1): 273-286.
doi: 10.1002/wrcr.v50.1 |
[25] |
Fan J L, Ostergaard K T, Guyot A, et al.2016. Estimating groundwater evapotranspiration by a subtropical pine plantation using diurnal water table fluctuations: Implications from night-time water use[J]. Journal of Hydrology, 542: 679-685.
doi: 10.1016/j.jhydrol.2016.09.040 |
[26] |
Fan Y, Miguezmacho G, Jobbágy E G, et al.2017. Hydrologic regulation of plant rooting depth[J]. Proceedings of the National Academy of Sciences, 114(40): 10572-10577.
doi: 10.1073/pnas.1712381114 |
[27] |
Fisher J B, Baldocchi D D, Misson L, et al.2007. What the towers don't see at night: Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California[J]. Tree Physiology, 27(4): 597-610.
doi: 10.1093/treephys/27.4.597 |
[28] |
Gerla P.1992. The relationship of water-table changes to the capillary fringe, evapotranspiration, and precipitation in intermittent wetlands[J]. Wetlands, 12(2): 91-98.
doi: 10.1007/BF03160590 |
[29] |
Gou S, Gonzales S, Miller G R.2015. Mapping potential groundwater-dependent ecosystems for sustainable management[J]. Groundwater, 53(1): 99-110.
doi: 10.1111/gwat.2015.53.issue-1 |
[30] |
Gou S, Miller G.2014. A groundwater-soil-plant-atmosphere continuum approach for modelling water stress, uptake, and hydraulic redistribution in phreatophytic vegetation[J]. Ecohydrology, 7(3): 1029-1041.
doi: 10.1002/eco.v7.3 |
[31] |
Green S R, Mcnaughton K G, Clothier B E.1989. Observations of night-time water use in kiwifruit vines and apple trees[J]. Agricultural and Forest Meteorology, 48(3): 251-261.
doi: 10.1016/0168-1923(89)90072-5 |
[32] |
Gribovszki Z, Kalicz P, Szilágyi J, et al.2008. Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations[J]. Journal of Hydrology, 349(1-2): 6-17.
doi: 10.1016/j.jhydrol.2007.10.049 |
[33] |
Haise H R, Kelley O J.1950. Causes of diurnal fluctuations of tensiometers[J]. Soil Science, 70(4): 301-314.
doi: 10.1097/00010694-195010000-00006 |
[34] | Hays K B.2003. Water use by saltcedar (Tamarix sp.) and associated vegetation on the Canadian, Colorado and Pecos Rivers in Texas[D]. Texas, TX: Texas A & M University. |
[35] | Healy R W.2010. Estimating Groundwater Recharge[M]. Cambridge, UK: Cambridge University Press. |
[36] |
Jiang X W, Sun Z C, Zhao K Y, et al.2017. A method for simultaneous estimation of groundwater evapotranspiration and inflow rates in the discharge area using seasonal water table fluctuations[J]. Journal of Hydrology, 548: 498-507.
doi: 10.1016/j.jhydrol.2017.03.026 |
[37] | Johnson A I.1967. Specific yield--compilation of specific yields for various materials[R]. Geological survey water-supply paper 1662-D. Washington: United States Government Printing Office. |
[38] | Klinker L, Hansen H.1964. Bemerkungen zur tagesperiodischen variationen des grundwasserhorizontes und des wasserstandes in kleinen wasserlaufen[J]. Zeitschrift für Meteorologie, 17: 240-245. |
[39] |
Lautz L.2008. Estimating groundwater evapotranspiration rates using diurnal water-table fluctuations in a semi-arid riparian zone[J]. Hydrogeology Journal, 16(3): 483-497.
doi: 10.1007/s10040-007-0239-0 |
[40] |
Loheide S P.2008. A method for estimating subdaily evapotranspiration of shallow groundwater using diurnal water table fluctuations[J]. Ecohydrology, 1(1): 59-66.
doi: 10.1002/eco.7 |
[41] | Loheide S P, Butler J J, Gorelick S M.2005. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment[J]. Water Resources Research, 41(7): W07030. |
[42] | Martinet M C, Vivoni E R, Cleverly J R, et al.2009. On groundwater fluctuations, evapotranspiration, and understory removal in riparian corridors[J]. Water Resources Research, 45(5): W05425. |
[43] | Mäkelä A, Givnish T, Berninger F, et al.2002. Challenges and opportunities of the optimality approach in plant ecology[J]. Silva Fennica, 36(3): 605-614. |
[44] | Mclaughlin D L, Cohen M J.2011. Thermal artifacts in measurements of fine-scale water level variation[J]. Water Resources Research, 47(9): W09601. |
[45] | Meinzer O E.1927. Plants as indicators of ground water[R]. Geological survey water-supply paper 577. Washington: United States Government Printing Office. |
[46] |
Meyboom P.1965. Three observations on streamflow depletion by phreatophytes[J]. Journal of Hydrology, 2(3): 248-261.
doi: 10.1016/0022-1694(65)90040-5 |
[47] | Miller G R, Chen X Y, Rubin Y, et al.2010. Groundwater uptake by woody vegetation in a semiarid oak savanna[J]. Water Resources Research, 46(10): W10503. |
[48] | Nachabe M.2002. Analytical expressions for transient specific yield and shallow water table drainage[J]. Water Resources Research, 38(10): 1193. |
[49] |
Nachabe M, Shah N, Ross M, et al.2005. Evapotranspiration of two vegetation covers in a shallow water table environment[J]. Soil Science Society of America Journal, 69(2): 492-499.
doi: 10.2136/sssaj2005.0492 |
[50] |
Naumburg E, Matagonzalez R, Hunter R G, et al.2005. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response mmodeling with an emphasis on great basin vegetation[J]. Environmental Management, 35(6): 726-740.
doi: 10.1007/s00267-004-0194-7 |
[51] | Newman B D, Wilcox B P, Archer S R, et al.2006. Ecohydrology of water-limited environments: A scientific vision[J]. Water Resources Research. 42(6): W06302. |
[52] |
Niu G Y, Paniconi C, Troch P A, et al.2014. An integrated modelling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed[J]. Ecohydrology, 7(2): 427-439.
doi: 10.1002/eco.v7.2 |
[53] |
Niu G Y, Troch P A, Paniconi C, et al.2014. An integrated modelling framework of catchment-scale ecohydrological processes: 2. The role of water subsidy by overland flow on vegetation dynamics in a semi-arid catchment[J]. Ecohydrology, 7(2): 815-827.
doi: 10.1002/eco.v7.2 |
[54] | Orellana F, Verma P, Loheide S P, et al.2012. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems[J]. Reviews of Geophysics, 50(3): RG3003. |
[55] | Rammig A, Mahecha M D.2015. Ecology: Ecosystem responses to climate extremes[J]. Nature, 527: 315-316. |
[56] | Reigner I C.1966. A method of estimating steamflow loss by evapotranspiration from the Riparian Zone[J]. Forest Science, 12(2): 130-139. |
[57] | Robinson T W.1958. Phreatophytes[R]. Geological survey water-supply paper 1423. Washington: United States Government Printing Office. |
[58] |
Rosenberry D O, Winter T C.1997. Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota[J]. Journal of Hydrology, 191(1-4): 266-289.
doi: 10.1016/S0022-1694(96)03050-8 |
[59] |
Rushton B.1996. Hydrologic budget for a freshwater marsh in Florida[J]. Water Resources Bulletin, 32(1): 13-21.
doi: 10.1111/jawr.1996.32.issue-1 |
[60] |
Sala A, Smith S D, Devitt D A.1996. Water use by Tamarix Ramosissima and Associated Phreatophytes in a Mojave Desert Floodplain[J]. Ecological Applications, 6(3): 888-898.
doi: 10.2307/2269492 |
[61] |
Scanlon B, Healy R, Cook P.2002. Choosing appropriate techniques for quantifying groundwater recharge[J]. Hydrogeology Journal, 10(1): 18-39.
doi: 10.1007/s10040-001-0176-2 |
[62] |
Schilling K E.2007. Water table fluctuations under three riparian land covers, Iowa (USA)[J]. Hydrological Processes, 21(18): 2415-2424.
doi: 10.1002/(ISSN)1099-1085 |
[63] |
Schimel D S.2010. Drylands in the earth system[J]. Science, 327: 418-419.
doi: 10.1126/science.1184946 |
[64] | Soylu M E, Lenters J D, Istanbulluoglu E, et al.2012. On evapotranspiration and shallow groundwater fluctuations: A Fourier-based improvement to the White method[J]. Water Resources Research, 48(6): W06506. |
[65] |
Troxell H.1936. The diurnal fluctuation in the ground-water and flow of the Santa Ana River and its meaning[J]. Transactions of the American Geophysical Union, 17(4): 496-504.
doi: 10.1029/TR017i002p00496 |
[66] |
Vonlanthen B, Zhang X, Bruelheide H.2010. On the run for water: Root growth of two phreatophytes in the Taklamakan Desert[J]. Journal of Arid Environments, 74(12): 1604-1615.
doi: 10.1016/j.jaridenv.2010.07.004 |
[67] | Wang P, Grinevsky S O, Pozdniakov S P, et al.2014. Application of the water table fluctuation method for estimating evapotranspiration at two phreatophyte-dominated sites under hyper-arid environments[J]. Journal of Hydrology 519: 2289-2300. |
[68] |
Wang P, Niu G Y, Fang Y H, et al.2018. Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake[J]. Water Resources Research, 54(3): 1560-1575.
doi: 10.1002/wrcr.v54.3 |
[69] |
Wang P, Pozdniakov S P.2014. A statistical approach to estimating evapotranspiration from diurnal groundwater level fluctuations[J]. Water Resources Research, 50(3): 2276-2292.
doi: 10.1002/2013WR014251 |
[70] |
Wang P, Yu J J, Pozdniakov S P, et al.2014. Shallow groundwater dynamics and its driving forces in extremely arid areas: A case study of the lower Heihe River in northwestern China[J]. Hydrological Processes, 28(3): 1539-1553.
doi: 10.1002/hyp.v28.3 |
[71] |
Wang P, Zhang Y C, Yu J J, et al.2011. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, northwestern China[J]. Journal of Plant Ecology, 4(1-2): 77-90.
doi: 10.1093/jpe/rtr002 |
[72] | White W N.1932. A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: Results of investigation in Escalante Valley, Utah[R]. US Geological Survey, Water Supply Paper 659. Washington D C: A United States Department of the Interior. |
[73] |
Yin L H, Zhou Y X, Ge S M, et al.2013. Comparison and modification of methods for estimating evapotranspiration using diurnal groundwater level fluctuations in arid and semiarid regions[J]. Journal of Hydrology, 496(0): 9-16.
doi: 10.1016/j.jhydrol.2013.05.016 |
[74] |
Yu T F, Feng Q, Si J H, et al.2013. Hydraulic redistribution of soil water by roots of two desert riparian phreatophytes in northwest China's extremely arid region[J]. Plant Soil, 372(1-2): 297-308.
doi: 10.1007/s11104-013-1727-8 |
[75] |
Yuan G F, Luo Y, Shao M A, et al.2015. Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin[J]. Science China Earth Sciences, 58(6): 1032-1042.
doi: 10.1007/s11430-014-5045-7 |
[76] |
Yue W F, Wang T J, Franz T E, et al.2016. Spatiotemporal patterns of water table fluctuations and evapotranspiration induced by riparian vegetation in a semiarid area[J]. Water Resources Research, 52(3): 1948-1960.
doi: 10.1002/2015WR017546 |
[77] |
Zhang P, Yuan G F, Shao M A, et al.2016. Performance of the White method for estimating groundwater evapotranspiration under conditions of deep and fluctuating groundwater[J]. Hydrological Processes, 30(1): 106-118.
doi: 10.1002/hyp.10552 |
[78] |
Zhu J T, Young M, Healey J, et al.2011. Interference of river level changes on riparian zone evapotranspiration estimates from diurnal groundwater level fluctuations[J]. Journal of Hydrology, 403(3-4): 381-389.
doi: 10.1016/j.jhydrol.2011.04.016 |
[1] | 温媛媛, 赵军, 王炎强, 王玉纯, 王建邦. 基于MOD16的山西省地表蒸散发时空变化特征分析[J]. 地理科学进展, 2020, 39(2): 255-264. |
[2] | 杨晴青, 杨新军, 高岩辉. 1980年以来黄土高原半干旱区乡村人居环境系统脆弱性时序演变——以陕西省佳县为例[J]. 地理科学进展, 2019, 38(5): 756-771. |
[3] | 王平. 西北干旱区间歇性河流与含水层水量交换研究进展与展望[J]. 地理科学进展, 2018, 37(2): 183-197. |
[4] | 申元村, 王秀红, 程维明, 吴金凤, 卢琦, 冯益明. 中国戈壁综合自然区划研究[J]. 地理科学进展, 2016, 35(1): 57-66. |
[5] | 艳燕, 张弛, 匡文慧, 罗格平, 陈春波. 天山北坡城市群非渗透面下的土壤有机碳特征[J]. 地理科学进展, 2015, 34(6): 781-789. |
[6] | 花婷, 王训明. 东亚干旱半干旱区沙漠化与气候变化相互影响研究进展[J]. 地理科学进展, 2014, 33(6): 841-852. |
[7] | 张士锋, 王翠翠, 孟秀敬, 华东, 门宝辉, 李智飞. 永定河北京段蒸散发研究[J]. 地理科学进展, 2013, 32(4): 580-586. |
[8] | 张显峰, 赵杰鹏, 刘羽. 一种改进的土壤水分微波遥感反演模型[J]. 地理科学进展, 2013, 32(1): 78-86. |
[9] | 宋璐璐, 尹云鹤, 吴绍洪. 蒸散发测定方法研究进展[J]. 地理科学进展, 2012, 31(9): 1186-1195. |
[10] | 孙倩, 塔西甫拉提·特依拜, 丁建丽, 张飞, 买买提·沙吾提, 韩桂红. 干旱区典型绿洲土地利用/覆被变化及其对土壤盐渍化的效应研究——以新疆沙雅县为例[J]. 地理科学进展, 2012, 31(9): 1212-1223. |
[11] | 郭斌, 李卫红, 郝兴明, 李宝富, 曹志超. 极端干旱区不同下垫面土壤凝结水试验研究[J]. 地理科学进展, 2012, 31(9): 1171-1179. |
[12] | 赵玲玲, 王中根, 夏军, 陈喜, 秦年秀. Priestley-Taylor公式的改进及其在互补蒸散模型中的应用[J]. 地理科学进展, 2011, 30(7): 805-810. |
[13] | 朱会义, 李义. 西北干旱区耕地扩张原因的实证分析[J]. 地理科学进展, 2011, 30(5): 615-620. |
[14] | 黄莹1, 2, 3|包安明1, 4|陈曦1|刘海隆1|杨光华1, 2. 新疆天山北坡干旱区GDP时空模拟[J]. 地理科学进展, 2009, 28(4): 494-502. |
[15] | 鲍超,方创琳. 干旱区水资源开发利用对生态环境影响的 研究进展与展望[J]. 地理科学进展, 2008, 27(3): 38-46. |
|