地理科学进展 ›› 2018, Vol. 37 ›› Issue (7): 923-932.doi: 10.18306/dlkxjz.2018.07.006
收稿日期:
2017-09-06
修回日期:
2018-02-10
出版日期:
2018-07-28
发布日期:
2018-07-28
作者简介:
作者简介:徐明(1993-),女,黑龙江齐齐哈尔人,硕士研究生,主要从事青藏高原降水研究,E-mail:
基金资助:
Ming XU(), Yuli SHI(
), Bin WANG
Received:
2017-09-06
Revised:
2018-02-10
Online:
2018-07-28
Published:
2018-07-28
Supported by:
摘要:
青藏高原对全球气候研究具有重要意义,而降水数据对水文、气象和生态等领域的研究也至关重要,且随着研究内容和尺度的变化,对高时空分辨率的历史降水数据的需求越发迫切。本文基于TRMM 3B43降水数据,采用随机森林算法,引入归一化植被指数(AVHRR NDVI)、高程(SRTM DEM)、坡度、坡向、经度、纬度6个地理因子,建立历史降水重建模型,获得1982-1997年分辨率为0.0833°的青藏高原年降水数据,然后根据比例系数法计算出月降水数据。为提高精度,利用站点数据对月降水数据进行校正。结果表明,该方法能简单有效地获得高时空分辨率的历史降水数据,决定系数R2大部分在0.4~0.9之间,平均值为0.6767,其中夏季效果最好,冬季效果最差;均方根误差RMSE和平均绝对误差MAE均在50 mm以下,RMSE均值为22.66 mm,MAE均值为15.97 mm;偏差Bias较小,基本在0.0~0.1之间。
徐明, 石玉立, 王彬. 高分辨率青藏高原历史月降水数据重建[J]. 地理科学进展, 2018, 37(7): 923-932.
Ming XU, Yuli SHI, Bin WANG. Reconstruction of high resolution monthly precipitation data of the Tibetan Plateau[J]. PROGRESS IN GEOGRAPHY, 2018, 37(7): 923-932.
[1] |
陈少勇, 董安祥, 韩通. 2007. 祁连山东、西部夏季降水量时空分布的差异及其成因研究[J]. 南京气象学院学报, 30(5): 715-719.
doi: 10.3969/j.issn.1674-7097.2007.05.019 |
[Chen S Y, Dong A X, Han T.2007. Differences in summer precipitation between the east and west of the Qilian Mountains and its contributing factors[J]. Journal of Nanjing Institute of Meteorology, 30(5): 715-719.]
doi: 10.3969/j.issn.1674-7097.2007.05.019 |
|
[2] |
杜加强, 舒俭民, 赵晨曦, 等. 2016. 两代AVHRR GIMMS NDVI数据集的对比分析: 以新疆地区为例[J]. 生态学报, 36(21): 6738-6749.
doi: 10.5846/stxb201504190805 |
[Du J Q, Shu J M, Zhao C X, et al.2016. Comparison of GIMMS NDVI3G and GIMMS NDVIG for monitoring vegetation activity and its responses to climate changes in Xinjiang during 1982-2006[J]. Acta Ecologica Sinica, 36(21): 6738-6749.]
doi: 10.5846/stxb201504190805 |
|
[3] | 傅抱璞. 1992. 地形和海拔高度对降水的影响[J]. 地理学报, 47(4): 302-314. |
[Fu B P.1992. The effects of topography and elevation on precipitation[J]. Acta Geographica Sinica, 47(4): 302-314.] | |
[4] |
何红艳, 郭志华, 肖文发, 等. 2005. 利用GIS和多变量分析估算青藏高原月降水[J]. 生态学报, 25(11): 2933-2938.
doi: 10.3321/j.issn:1000-0933.2005.11.020 |
[He H Y, Guo Z H, Xiao W F, et al.2005. Mapping monthly precipitation for Tibetan Plateau with GIS and multivariate analysis based on dem data[J]. Acta Ecologica Sinica, 25(11): 2933-2938.]
doi: 10.3321/j.issn:1000-0933.2005.11.020 |
|
[5] |
侯光良, 鄂崇毅, 肖景义. 2012. 青藏高原全新世降水序列的集成重建[J]. 地理科学进展, 31(9): 1117-1123.
doi: 10.11820/dlkxjz.2012.09.001 |
[Hou G L, E C Y, Xiao J Y.2012. Synthetical reconstruction of the precipitation series of the Qinghai-Tibet Plateau during the holocene[J]. Progress in Geography, 31(9): 1117-1123.]
doi: 10.11820/dlkxjz.2012.09.001 |
|
[6] |
黄聪敏, 陆德辉, 许艾米. 2014. 华南地区几种降水产品的对比分析[J]. 广东气象, 36(4): 19-24.
doi: 10.3969/j.issn.1007-6190.2014.04.005 |
[Huang C M, Lu D H, Xu A M.2014. Comparisons and analysis of a number of precipitation products for the region of South China[J]. Guangdong Meteorology, 36(4): 19-24.]
doi: 10.3969/j.issn.1007-6190.2014.04.005 |
|
[7] |
李欣海. 2013. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报, 50(4): 1190-1197.
doi: 10.7679/j.issn.2095-1353.2013.163 |
[Li X H.2013. Using "random forest" for classification and regression[J]. Chinese Journal of Applied Entomology, 50(4): 1190-1197.]
doi: 10.7679/j.issn.2095-1353.2013.163 |
|
[8] | 林振耀, 吴祥定. 1990. 青藏高原水汽输送路径的探讨[J]. 地理研究, 9(3): 33-40. |
[Lin Z Y, Wu X D.1990. A preliminary analysis about the tracks of moisture transportation on the Qinghai-Xizang Plateau[J]. Geographical Research, 9(3): 33-40.] | |
[9] |
刘永和, 郭维栋, 冯锦明, 等. 2011. 气象资料的统计降尺度方法综述[J]. 地球科学进展, 26(8): 837-847.
doi: 10.11867/j.issn.1001-8166.2011.08.0837 |
[Liu Y H, Guo W D, Feng J M, et al.2011. A summary of methods for statistical downscaling of meteorological data[J]. Advances in Earth Science, 26(8): 837-847.]
doi: 10.11867/j.issn.1001-8166.2011.08.0837 |
|
[10] | 明均仁, 肖凯. 2012. 基于R语言的面向需水预测的随机森林方法[J]. 统计与决策, (9): 81-83. |
[Ming J R, Xiao K.2012. Jiyu R yuyan de mianxiang xushui yuce de suijisenlin fangfa[J]. Statistics & Decision, (9): 81-83.] | |
[11] | 齐文文, 张百平, 庞宇, 等. 2013. 基于TRMM数据的青藏高原降水的空间和季节分布特征[J]. 地理科学, 33(8): 999-1005. |
[Qi W W, Zhang B P, Pang Y, et al.2013. TRMM-data-based spatial and seasonal patterns of precipitation in the Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 33(8): 999-1005.] | |
[12] | 吴国雄. 2004. 我国青藏高原气候动力学研究的近期进展[J]. 第四纪研究, 24(1): 1-9. |
[Wu G X.2004. Recent progress in the study of the Qinghai-Xizang Plateau climate dynamics in China[J]. Quaternary Sciences, 24(1): 1-9.] | |
[13] |
徐祥德, 赵天良, 施晓晖, 等. 2015. 青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J]. 气象学报, 73(1): 20-35.
doi: 10.11676/qxxb2014.051 |
[Xu X D, Zhao T L, Shi X H, et al.2015. A study of the role of the Tibetan Plateau's thermal forcing in modulating rainband and moisture transport in eastern China[J]. Acta Meteorologica Sinica, 73(1): 20-35.]
doi: 10.11676/qxxb2014.051 |
|
[14] |
Beck H E, McVicar T R, van Dijk A I J M, et al.2011. Global evaluation of four AVHRR-NDVI data sets: Intercomparison and assessment against Landsat imagery[J]. Remote Sensing of Environment, 115(10): 2547-2563.
doi: 10.1016/j.rse.2011.05.012 |
[15] |
Chen C, Zhao S H, Duan Z, et al.2015. An improved spatial downscaling procedure for TRMM 3B43 precipitation product using geographically weighted regression[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(9): 4592-4604.
doi: 10.1109/JSTARS.2015.2441734 |
[16] |
Duan Z, Bastiaanssen W G M.2013. First results from version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure[J]. Remote Sensing of Environment, 131: 1-13.
doi: 10.1016/j.rse.2012.12.002 |
[17] |
Immerzeel W W, Rutten M M, Droogers P.2009. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J]. Remote Sensing of Environment, 113(2): 362-370.
doi: 10.1016/j.rse.2008.10.004 |
[18] |
Jia S F, Zhu W B, Lü A F, et al.2011. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment, 115(12): 3069-3079.
doi: 10.1016/j.rse.2011.06.009 |
[19] |
Maronna R.2011. Richard Berk: Statistical learning from a regression perspective[J]. Statistical Papers, 52(4): 981-982.
doi: 10.1007/s00362-010-0313-x |
[20] |
Pang G J, Wang X J, Yang M X.2017. Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012[J]. Quaternary International, 444: 87-96.
doi: 10.1016/j.quaint.2016.08.038 |
[21] | Prakash S, Mitra A K, Momin I M, et al.2015. A review of recent evaluations of TRMM multisatellite precipitation analysis (TMPA) research products against ground-based observations over Indian land and oceanic regions[J]. Mausam, 66(3): 355-366. |
[22] |
Shi Y L, Song L.2015. Spatial downscaling of monthly TRMM precipitation based on EVI and other geospatial variables over the Tibetan Plateau from 2001 to 2012[J]. Mountain Research and Development, 35(2): 180-194.
doi: 10.1659/MRD-JOURNAL-D-14-00119.1 |
[23] |
Xu S G, Wu C Y, Wang L, et al.2015. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics[J]. Remote Sensing of Environment, 162: 119-140.
doi: 10.1016/j.rse.2015.02.024 |
[1] | 邓国富, 李明启. 树轮密度对气候的响应及重建研究进展[J]. 地理科学进展, 2021, 40(2): 343-356. |
[2] | 孙赫, 苏凤阁. 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J]. 地理科学进展, 2020, 39(7): 1126-1139. |
[3] | 陈瑞, 杨梅学, 万国宁, 王学佳. 基于水热变化的青藏高原土壤冻融过程研究进展[J]. 地理科学进展, 2020, 39(11): 1944-1958. |
[4] | 王婧, 李海蓉, 杨林生. 青藏高原大骨节病流行区环境、食物及人群硒水平研究[J]. 地理科学进展, 2020, 39(10): 1677-1686. |
[5] | 周玉科. 青藏高原植被NDVI对气候因子响应的格兰杰效应分析[J]. 地理科学进展, 2019, 38(5): 718-730. |
[6] | 柳林, 刘文娟, 廖薇薇, 余洪杰, 姜超, 林荣平, 纪佳楷, 张政. 基于随机森林和时空核密度方法的不同周期犯罪热点预测对比[J]. 地理科学进展, 2018, 37(6): 761-771. |
[7] | 吉振明. 青藏高原黑碳气溶胶外源传输及气候效应模拟研究进展与展望[J]. 地理科学进展, 2018, 37(4): 465-475. |
[8] | 朱燕, 侯光良, 兰措卓玛, 高靖易, 庞龙辉. 基于GIS的青藏高原史前交通路线与分区分析[J]. 地理科学进展, 2018, 37(3): 438-449. |
[9] | 张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37(2): 214-223. |
[10] | 朱艳欣, 桑燕芳. 青藏高原降水季节分配的空间变化特征[J]. 地理科学进展, 2018, 37(11): 1533-1544. |
[11] | 陈锋, 冯金良. 高原湖泊中萝卜螺属壳体研究现状及展望[J]. 地理科学进展, 2018, 37(10): 1430-1441. |
[12] | 鹿化煜. 试论地貌学的新进展和趋势[J]. 地理科学进展, 2018, 37(1): 8-15. |
[13] | 闫军辉, 刘浩龙, 葛全胜, 郑景云, 郝志新, 王义民. 1906-2015年武汉市温度变化序列重建与初步分析[J]. 地理科学进展, 2017, 36(9): 1176-1183. |
[14] | 刘翀, 朱立平, 王君波, 乔宝晋, 鞠建廷, 黄磊. 基于MODIS的青藏高原湖泊透明度遥感反演[J]. 地理科学进展, 2017, 36(5): 597-609. |
[15] | 刘亚辰, 方修琦, 陶泽兴, 戴君虎. 诗歌中物候记录的基本特征及用于历史气候重建的处理方法[J]. 地理科学进展, 2017, 36(4): 483-490. |
|