地理科学进展 ›› 2018, Vol. 37 ›› Issue (4): 476-484.doi: 10.18306/dlkxjz.2018.04.003
收稿日期:
2018-01-25
修回日期:
2018-04-13
出版日期:
2018-04-20
发布日期:
2018-04-20
作者简介:
作者简介:廖凯华(1984-),男,江西吉安人,副研究员,主要从事土壤水文过程与营养盐输移耦合研究,E-mail:
基金资助:
Received:
2018-01-25
Revised:
2018-04-13
Online:
2018-04-20
Published:
2018-04-20
Supported by:
摘要:
东南湿润区是我国生态环境问题最为突出的区域之一,水体的富营养化是困扰该区域经济和社会发展的主要问题。尤其近些年来,在政府鼓励和市场推动双重作用下,丘陵山区的开发力度逐步加强,越来越多的原生态竹林被开发为经济型用地(如茶园)。但该土地利用方式的转变在带来经济效益的同时,也改变了下垫面土壤孔隙结构和土壤水文过程,从而极大地影响着营养盐随土壤水分的迁移和转化。在国家自然科学基金青年科学基金项目“太湖流域丘陵区坡面土壤水文过程物理机制及模拟研究”的资助下,在以下3个方面取得了重要进展:①不同土地利用坡面土壤水分时空变化与影响因素;②坡面水文过程与水量平衡;③坡面土壤水文过程影响机制。目前对太湖流域丘陵区土壤水文过程研究虽取得一些进展,但其影响机制仍不十分明确,有待进一步深入的探讨。上述成果的取得以及未来的持续探索,对于太湖水体富营养化与流域面源农业面源污染控制具有重要的环境意义,进而为推动我国流域生态文明建设提供理论支持。
廖凯华, 吕立刚. 东南湿润区坡面土壤水文过程研究进展与展望[J]. 地理科学进展, 2018, 37(4): 476-484.
Kaihua LIAO, Ligang LV. Advances in research of hillslope soil hydrological processes in the humid region of Southeast China[J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 476-484.
[1] |
常龙飞, 王晓龙, 李恒鹏, 等. 2012. 巢湖典型低山丘陵区不同土地利用类型壤中流养分流失特征[J]. 生态与农村环境学报, 28(5): 511-517.
doi: 10.3969/j.issn.1673-4831.2012.05.007 |
[Chang L F, Wang X L, Li H P, et al.2012. Characteristics of soil nutrient loss with interflow from uplands as affected by land uses in low hill region of Chaohu Basin[J]. Journal of Ecology and Rural Environment, 28(5): 511-517.]
doi: 10.3969/j.issn.1673-4831.2012.05.007 |
|
[2] |
陈红, 冯云, 周建梅, 等. 2013. 植物根系生物学研究进展[J]. 世界林业研究, 26(5): 25-29.
doi: 10.3969/j.issn.1004-7549.2011.02.002 |
[Chen H, Feng Y, Zhou J M, et al.2013. Research Advance of Plant Root Biology[J]. World Forestry Research, 26(5): 25-29.]
doi: 10.3969/j.issn.1004-7549.2011.02.002 |
|
[3] |
陈晓安, 杨洁, 汤崇军, 等. 2017. 雨强和坡度对红壤坡耕地地表径流及壤中流的影响[J]. 农业工程学报, 33(9): 141-146.
doi: 10.11975/j.issn.1002-6819.2017.09.018 |
[Chen X A, Yang J, Tang C J, et al.2017. Effects of rainfall intensity and slope on surface and subsurface runoff in red soil slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering, 33(9): 141-146.]
doi: 10.11975/j.issn.1002-6819.2017.09.018 |
|
[4] |
杜志勇, 刘苑秋, 郑诗樟, 等. 2007. 退化红壤区不同模式重建森林土壤水分空间变异性[J]. 水土保持学报, 21(5): 101-105.
doi: 10.3321/j.issn:1009-2242.2007.05.024 |
[Du Z Y, Liu Y Q, Zheng S Z, et al.2007. Spatial variability of soil moisture in different models of rehabilitated forest in degraded red soil region[J]. Journal of Soil and Water Conservation, 21(5): 101-105.]
doi: 10.3321/j.issn:1009-2242.2007.05.024 |
|
[5] | 段剑, 刘窑军, 汤崇军, 等. 2017. 不同下垫面红壤坡地壤中流对自然降雨的响应[J]. 水利学报, 48(8): 977-985. |
[Duan J, Liu Y J, Tang C J, et al.2017. Responses of subsurface flow characteristics to natural rainfall in red soil slopes of different surface covers[J]. Journal of Hydraulic Engineering, 48(8): 977-985.] | |
[6] |
韩莹, 李恒鹏, 聂小飞, 等. 2012. 太湖上游低山丘陵地区不同用地类型氮、磷收支平衡特征[J]. 湖泊科学, 24(6): 829-837.
doi: 10.18307/2012.0604 |
[Han Y, Li H P, Nie X F, et al.2012. Nitrogen and phosphorus budget of different land use types in hilly area of Lake Taihu upper-river basin[J]. Journal of Lake Sciences, 24(6): 829-837.]
doi: 10.18307/2012.0604 |
|
[7] |
侯旭蕾, 吕殿青, 王辉, 等. 2013. 坡度对红壤土坡面降雨侵蚀及水文过程的影响[J]. 灌溉排水学报, 32(6): 118-121.
doi: 10.7631/j.issn.1672-3317.2013.06.031 |
[Hou X L, Lv D Q, Wang H, et al.2013. Effect of slope gradients on rainfall erosion and hydrological process on red soil land-slope[J]. Journal of Irrigation and Drainage, 32(6): 118-121.]
doi: 10.7631/j.issn.1672-3317.2013.06.031 |
|
[8] |
李恒鹏, 刘晓玫, 黄文钰. 2004. 太湖流域浙西区不同土地类型的面源污染产出[J]. 地理学报, 59(3): 401-408.
doi: 10.3321/j.issn:0375-5444.2004.03.010 |
[Li H P, Liu X M, Huang W Y.2004. The non-point output of different landuse types in Zhexi hydraulic region of Taihu Basin[J]. Acta Geographica Sinica, 59(3): 401-408.]
doi: 10.3321/j.issn:0375-5444.2004.03.010 |
|
[9] | 林绍霞, 张清海, 张珍明, 等. 2012. 不同垦植模式茶园土壤性状及团聚体特征研究[J]. 水土保持研究, 19(6): 45-49. |
[Lin S X, Zhang Q H, Zhang Z M, et al.2012. Research for soil properties and aggregates in tea plantation with different planting patterns[J]. Research of Soil and Water Conservation, 19(6): 45-49.] | |
[10] | 刘宏伟, 高菲, 余钟波, 等. 2016. 湿润地区坡面土壤含水率时空变异性研究[J]. 水资源保护, 32(5): 17-23. |
[Liu H W, Gao F, Yu Z B, et al.2016. Study on temporal-spatial variability of soil moisture content on hillslope in a humid area[J]. Water Resources Protection, 32(5): 17-23.] | |
[11] | 王小燕, 李朝霞, 蔡崇法. 2012. 砾石覆盖紫色土坡耕地水文过程[J]. 水科学进展, 23(1): 38-45. |
[Wang X Y, Li Z X, Cai C F.2012. Hydrological processes on sloped farmland in purple soil regions with rock fragment cover[J]. Advances in Water Science, 23(1): 38-45.] | |
[12] |
谢颂华, 涂安国, 莫明浩, 等. 2015. 自然降雨事件下红壤坡地壤中流产流过程特征分析[J]. 水科学进展, 26(4): 526-534.
doi: 10.14042/j.cnki.32.1309.2015.04.009 |
[Xie S H, Tu A G, Mo M H, et al.2015. Analysis on the characteristic of interflow production processes on red soil slopes in the case of natural rainfall events[J]. Advances in Water Science, 26(4): 526-534.]
doi: 10.14042/j.cnki.32.1309.2015.04.009 |
|
[13] |
杨超杰, 贺斌, 段伟利, 等. 2017. 太湖典型丘陵水源地水质时空变化及影响因素分析: 以平桥河流域为例[J]. 长江流域资源与环境, 26(2): 273-281.
doi: 10.11870/cjlyzyyhj201702013 |
[Yang C J, He B, Duan W L, et al.2017. Analysing the spatial and temporal variations and influencing factors of the water quality in a typical hilly water source of Lake Taihu Basin: A case study in Pingqiao river watershed[J]. Resources and Environment in the Yangtze Basin, 26(2): 273-281.]
doi: 10.11870/cjlyzyyhj201702013 |
|
[14] |
Bárdossy A, Lehmann W.1998. Spatial distribution of soil moisture in a small catchment. Part 1: Geostatistical analysis[J]. Journal of Hydrology, 206(1-2): 1-15.
doi: 10.1016/S0022-1694(97)00152-2 |
[15] |
Brolsma R J, van Vliet M T H, Bierkens M F P.2010. Climate change impact on a groundwater-influenced hillslope ecosystem[J]. Water Resources Research, 46(11): 389-400.
doi: 10.1029/2009WR008782 |
[16] |
Cambardella C A, Moorman T B, Parkin T B, et al.1994. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America Journal, 58(5):1501-1511.
doi: 10.2136/sssaj1994.03615995005800050033x |
[17] |
Freer J, Mcdonnell J J, Beven K J, et al.2002. The role of bedrock topography on subsurface storm flow[J]. Water Resources Research, 38(12): 1269.
doi: 10.1029/2001WR000872 |
[18] |
Fu B J, Yang Z J, Wang Y L, et al.2001. A mathematical model of soil moisture spatial distribution on the hillslopes of the loess plateau[J]. Science in China: Earth Sciences, 44(5): 395-402.
doi: 10.1007/BF02909778 |
[19] |
Grayson R B, Western A W, Chiew F H S, et al.1997. Preferred states in spatial soil moisture patterns: Local and nonlocal controls[J]. Water Resources Research, 33(12):2897-2908.
doi: 10.1029/97WR02174 |
[20] |
Hopp L, Harman C, Desilets S L E, et al.2009. Hillslope hydrology under glass: Confronting fundamental questions of soil-water-biota co-evolution at Biosphere 2[J]. Hydrology and Earth System Sciences, 13(11): 2105-2118.
doi: 10.5194/hessd-6-4411-2009 |
[21] |
Lan M, Hu H C, Tian F Q, et al.2013. A two-dimensional numerical model coupled with multiple hillslope hydrodynamic processes and its application to subsurface flow simulation[J]. Science China: Technological Sciences, 56(10): 2491-2500.
doi: 10.1007/s11431-013-5347-6 |
[22] |
Liao K H, Lai X M, Liu Y J, et al.2016. Uncertainty analysis in near-surface soil moisture estimation on two typical land-use hillslopes[J]. Journal of Soils and Sediments, 16(8): 2059-2071.
doi: 10.1007/s11368-016-1405-6 |
[23] |
Liao K H, Lai X M, Lv L G, et al.2016. Uncertainty in predicting the spatial pattern of soil water temporal stability at the hillslope scale[J]. Soil Research, 54(6): 739-748.
doi: 10.1071/SR15059 |
[24] |
Liao K H, Lai X M, Zhou Z W, et al.2017a. Applying fractal analysis to detect spatio-temporal variability of soil moisture content on two contrasting land use hillslopes[J]. Catena, 157: 163-172.
doi: 10.1016/j.catena.2017.05.022 |
[25] |
Liao K H, Lai X M, Zhou Z W, et al.2017b. Combining the ensemble mean and bias correction approaches to reduce the uncertainty in hillslope-scale soil moisture simulation[J]. Agricultural Water Management, 191: 29-36.
doi: 10.1016/j.agwat.2017.05.014 |
[26] |
Liao K H, Lv L G, Yang G S, et al.2016. Sensitivity of simulated hillslope subsurface flow to rainfall patterns, soil texture and land use[J]. Soil Use and Management, 32(3): 422-432.
doi: 10.1111/sum.12282 |
[27] |
Liao K H, Xu F, Zheng J S, et al.2014. Using different multimodel ensemble approaches to simulate soil moisture in a forest site with six traditional pedotransfer functions[J]. Environmental Modelling & Software, 57: 27-32.
doi: 10.1016/j.envsoft.2014.03.016 |
[28] |
Liao K H, Zhou Z W, Lai X M, et al.2017. Evaluation of different approaches for identifying optimal sites to predict mean hillslope soil moisture content[J]. Journal of Hydrology, 547: 10-20.
doi: 10.1016/j.jhydrol.2017.01.043 |
[29] |
Lin H S, Bouma J, Wilding L P, et al.2005. Advances in Hydropedology[J]. Advances in Agronomy, 85:1-89.
doi: 10.1016/S0065-2113(04)85001-6 |
[30] |
McGuire K J, Weiler M, Mcdonnell J J.2007. Integrating tracer experiments with modeling to assess runoff processes and water transit times[J]. Advances in Water Resources, 30(4): 824-837.
doi: 10.1016/j.advwatres.2006.07.004 |
[31] |
Mualem Y.1976. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 12(3): 513-522.
doi: 10.1029/WR012i003p00513 |
[32] |
Pachepsky Y A, Rawls W J, Lin H S.2006. Hydropedology and pedotransfer functions[J]. Geoderma, 131(3-4): 308-316.
doi: 10.1016/j.geoderma.2005.03.012 |
[33] |
Penna D, Tromp-Van Meerveld H J, Gobbi A, et al.2011. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment[J]. Hydrology and Earth System Sciences, 15(3): 689-702.
doi: 10.5194/hessd-7-8091-2010 |
[34] |
Pionke H B, Hoover J R, Schnabel R R, et al.1988. Chemical-hydrologic interactions in the near-stream zone[J]. Water Resources Research, 24(7): 1101-1110.
doi: 10.1029/WR024i007p01101 |
[35] |
Qiu Y, Fu B J, Wang J, et al.2010. Spatial prediction of soil moisture content using multiple-linear regressions in a gully catchment of the Loess Plateau, China[J]. Journal of Arid Environments, 74(2): 208-220.
doi: 10.1016/j.jaridenv.2009.08.003 |
[36] |
Ritchie J T.1972. Model for predicting evaporation from a row crop with incomplete cover[J]. Water Resources Research, 8(5): 1204-1213.
doi: 10.1029/WR008i005p01204 |
[37] |
Schume H, Jost G, Katzensteiner K.2003. Spatio-temporal analysis of the soil water content in a mixed Norway spruce (Picea abies(L.) Karst.)-European beech (Fagus sylvatica L.) stand[J]. Geoderma, 112(3-4): 273-287.
doi: 10.1016/S0016-7061(02)00311-7 |
[38] |
Shi Y N, Baldwin D C, Davis K J, et al.2015. Simulating high-resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model[J]. Hydrological Processes, 29(21): 4624-4637.
doi: 10.1002/hyp.10593 |
[39] | Šimůnek J, Šejna M, van Genuchten M T.1999. The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media[R]. Version 2.0. Riverside, CA, USA: Salinity Laboratory Agricultural Research Service. |
[40] |
van Genuchten M T.1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44(5): 892-898.
doi: 10.2136/sssaj1980.03615995004400050002x |
[41] | van Genuchten M T.1987. A numerical model for water and solute movement in and below the root zone[R]. Riverside, CA, USA: US Salinity Laboratory. |
[42] |
Vepraskas M J, Heitman J L, Austin R E.2009. Future directions for hydropedology: quantifying impacts of global change on land use[J]. Hydrology and Earth System Sciences, 13(8): 1427-1438.
doi: 10.5194/hess-13-1427-2009 |
[43] |
Wanke H, Dünkeloh A, Udluft P.2008. Groundwater Recharge Assessment for the Kalahari Catchment of North-eastern Namibia and North-western Botswana with a Regional-scale Water Balance Model[J]. Water Resources Management, 22(9): 1143-1158.
doi: 10.1007/s11269-007-9217-5 |
[44] |
Weiler M, Mcdonnell J J.2007. Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes[J]. Water Resources Research, 43(3): W03403.
doi: 10.1029/2006WR004867 |
[45] |
Western A W, Zhou S L, Grayson R B, et al.2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes[J]. Journal of Hydrology, 286(1-4): 113-134.
doi: 10.1016/j.jhydrol.2003.09.014 |
[46] |
Williams C J, Mcnamara J P, Chandler D G.2009. Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain[J]. Hydrology and Earth System Sciences, 13(7):1325-1336.
doi: 10.5194/hessd-5-1927-2008 |
[47] |
Zhao N N, Yu F L, Li C Z, et al.2015. Soil moisture dynamics and effects on runoff generation at small hillslope scale[J]. Journal of Hydrologic Engineering, 20(7): 1-13.
doi: 10.1061/(ASCE)HE.1943-5584.0001062 |
[48] |
Zhu Q, Schmidt J P, Bryant R B.2012. Hot moments and hot spots of nutrient losses from a mixed land use watershed[J]. Journal of Hydrology, 414-415: 393-404.
doi: 10.1016/j.jhydrol.2011.11.011 |
[49] |
Zhu Q, Schmidt J P, Buda A R, et al.2011. Nitrogen loss from a mixed land use watershed as influenced by hydrology and seasons[J]. Journal of Hydrology, 405(3-4): 307-315.
doi: 10.1016/j.jhydrol.2011.05.028 |
[1] | 付占辉, 梅林, 郑茹敏, 王彤彤. 东北地区城市女性就业水平空间分异机制[J]. 地理科学进展, 2020, 39(8): 1308-1318. |
[2] | 程晗蓓, 邹游, 林赛南, 李志刚. 居住迁移对居民健康的影响研究进展述评[J]. 地理科学进展, 2020, 39(7): 1210-1223. |
[3] | 丁建军, 王璋, 柳艳红, 余方薇. 中国连片特困区经济韧性测度及影响因素分析[J]. 地理科学进展, 2020, 39(6): 924-937. |
[4] | 胡小芳, 李小雅, 王天宇, 赵红敏, 杨铄, 邓磊, 李景旺. 民宿空间分布的集聚模式与影响因素研究——基于杭州、湖州、恩施的比较[J]. 地理科学进展, 2020, 39(10): 1698-1707. |
[5] | 杨奎,张宇,赵小风,文琦,钟太洋. 乡村土地利用结构效率时空特征及影响因素[J]. 地理科学进展, 2019, 38(9): 1393-1402. |
[6] | 陈秧分, 刘玉, 王国刚. 大都市乡村发展比较及其对乡村振兴战略的启示[J]. 地理科学进展, 2019, 38(9): 1403-1411. |
[7] | 戴旭俊, 刘爱利. 地方认同的内涵维度及影响因素研究进展[J]. 地理科学进展, 2019, 38(5): 662-674. |
[8] | 刘洋, 吕建树, 毕军. 流域陆地生态系统水体净化服务表征及驱动力分析[J]. 地理科学进展, 2019, 38(4): 588-599. |
[9] | 李雪铭, 刘贺, 田深圳, 宫一路. 东北三省城市人居活动网络结构及影响因素分析——基于百度贴吧分析[J]. 地理科学进展, 2019, 38(11): 1726-1734. |
[10] | 何萍, 崔梅艳, 李矜霄, 刘树华. 昆明市太阳辐射变化特征及影响因子分析[J]. 地理科学进展, 2019, 38(11): 1793-1801. |
[11] | 杨文越, 曹小曙. 多尺度交通出行碳排放影响因素研究进展[J]. 地理科学进展, 2019, 38(11): 1814-1828. |
[12] | 宋琼, 赵新正, 李同昇, 刘静玉. 多重城市网络空间结构及影响因素——基于有向多值关系视角[J]. 地理科学进展, 2018, 37(9): 1257-1267. |
[13] | 宋伟轩, 马雨竹, 陈艳如. 南京城区住宅售租价格时空分异与影响因素[J]. 地理科学进展, 2018, 37(9): 1268-1276. |
[14] | 王建顺, 林李月, 朱宇, 艾尼江·杰力力. 西部民族地区流动人口户籍迁移意愿及影响因素——以新疆为例[J]. 地理科学进展, 2018, 37(8): 1140-1149. |
[15] | 王圣云, 罗玉婷, 韩亚杰, 李晶. 中国人类福祉地区差距演变及其影响因素——基于人类发展指数(HDI)的分析[J]. 地理科学进展, 2018, 37(8): 1150-1158. |
|