地理科学进展 ›› 2018, Vol. 37 ›› Issue (4): 465-475.doi: 10.18306/dlkxjz.2018.04.002
吉振明
收稿日期:
2018-02-28
修回日期:
2018-04-10
出版日期:
2018-04-20
发布日期:
2018-04-20
作者简介:
作者简介:吉振明(1983-),男,江苏无锡人,博士,副教授,硕导,主要从事气候变化归因和数值模拟研究,E-mail:
基金资助:
Received:
2018-02-28
Revised:
2018-04-10
Online:
2018-04-20
Published:
2018-04-20
Supported by:
摘要:
青藏高原毗邻全球大气污染物排放增长最快速的地区,受西风和南亚季风的影响,中亚、南亚等高原周边排放的污染物通过大气环流传输,进入高原并对其气候环境产生重要影响。观测事实表明:近几十年青藏高原东部和南部雪冰中黑碳含量呈显著上升趋势,这可能导致冰川加速融化和积雪持续时间缩短,最终影响青藏高原的水循环过程。前人对青藏高原黑碳的外源输送,特别是南亚大气污染物的贡献及其对高原气候、冰冻圈变化的影响,还没有较清晰和统一的认识。青藏高原污染物定点监测网络的发展及高分辨率区域气候—大气化学模式的应用,为定量评估高原污染物外源输送及气候效应提供了契机。本文在国家自然科学基金青年科学基金项目“南亚黑碳气溶胶跨境传输及其对青藏高原气候影响的数值模拟研究”的资助下,在以下三个方面取得了进展:①系统性论证了高分辨率区域气候—大气化学模式在高原的适用性,模拟了青藏高原及周边区域黑碳时空分布、传输和沉降过程;②揭示了污染物扩散的机制,评估了大气黑碳的气候及雪冰效应,并对比了自然源粉尘和人为源黑碳对青藏高原气候的影响;③定量估算了不同区域排放对高原黑碳外源输送的贡献率,其中来自南亚的黑碳对青藏高原外源输送的贡献率最高,在非季风期为61.3%,季风期为19.4%。本文揭示了外源输送黑碳对青藏高原气候的影响,为提高一带一路核心区冰冻圈与水资源的管理及预测能力,制定应对环境变化策略及国家气候外交谈判提供科学依据。
吉振明. 青藏高原黑碳气溶胶外源传输及气候效应模拟研究进展与展望[J]. 地理科学进展, 2018, 37(4): 465-475.
Zhenming JI. Advances and prospects of research on simulating transboundary black carbon and their climatic effects over the Tibetan Plateau[J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 465-475.
[1] |
卞建春, 严仁嫦, 陈洪滨. 2011. 亚洲夏季风是低层污染物进入平流层的重要途径[J]. 大气科学, 35(5): 897-902.
doi: 10.3878/j.issn.1006-9895.2011.05.09 |
[Bian J C, Yan R C, Chen H B.2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 35(5): 897-902.]
doi: 10.3878/j.issn.1006-9895.2011.05.09 |
|
[2] | 陈德亮, 徐柏青, 姚檀栋, 等. 2015. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 60(32): 3025-3035. |
[Chen D L, Xu B Q, Yao T D, et al.2015. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 60(32): 3025-3035.] | |
[3] | 王志立, 张华, 郭品文. 2009. 南亚地区黑碳气溶胶对亚洲夏季风的影响[J]. 高原气象, 28(2): 419-424. |
[Wang Z L, Zhang H, Guo P W.2009. Effects of black carbon aerosol in South Asia on Asian summer monsoon[J]. Plateau Meteorology, 28(2): 419-424.] | |
[4] | 张玉兰, 康世昌. 2017. 青藏高原及周边地区冰川中吸光性杂质及其影响研究进展[J]. 科学通报, 62(35): 4151-4162. |
[Zhang Y L, Kang S C.2017. Research progress of light-absorbing impurities in glaciers of the Tibetan Plateau and its surroundings[J]. Chinese Science Bulletin, 62(35): 4151-4162.] | |
[5] |
Cong Z Y, Kang S C, Gao S P, et al.2013. Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record[J]. Environmental Science & Technology, 47(6): 2579-2586.
doi: 10.1021/es3048202 pmid: 23402524 |
[6] |
Flanner M G, Shell K M, Barlage M, et al.2011. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008[J]. Nature Geoscience, 4: 151-155.
doi: 10.1038/ngeo1062 |
[7] |
Gao X J, Giorgi F.2017. Use of the RegCM system over East Asia: Review and perspectives[J]. Engineering, 3(5): 766-772.
doi: 10.1016/J.ENG.2017.05.019 |
[8] |
Giorgi F, Coppola E, Solmon F, et al.2012. RegCM4: Model description and preliminary tests over multiple CORDEX domains[J]. Climate Research, 52: 7-29.
doi: 10.3354/cr01018 |
[9] |
Ji Z M.2016. Modeling black carbon and its potential radiative effects over the Tibetan Plateau[J]. Advances in Climate Change Research, 7(3): 139-144.
doi: 10.1016/j.accre.2016.10.002 |
[10] |
Ji Z M, Kang S C.2013. Double nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios[J]. Journal of the Atmospheric Sciences, 70(4): 1278-1290.
doi: 10.1175/JAS-D-12-0155.1 |
[11] |
Ji Z M, Kang S C.2015. Evaluation of extreme climate events using a regional climate model for China[J]. International Journal of Climatology, 35(6): 888-902.
doi: 10.1002/joc.4024 |
[12] |
Ji Z M, Kang S C, Cong Z Y, et al.2015. Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: Distribution, transportation, deposition, and climatic effects[J]. Climate Dynamics, 45(9-10): 2831-2846.
doi: 10.1007/s00382-015-2509-1 |
[13] |
Ji Z M, Kang S C, Zhang D F, et al.2011. Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon[J]. Climate Dynamics, 36(9-10): 1633-1647.
doi: 10.1007/s00382-010-0982-0 |
[14] |
Ji Z M, Kang S C, Zhang Q G, et al.2016. Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990-2009 using a regional climate model[J]. Atmospheric Research, 178-179: 484-496.
doi: 10.1016/j.atmosres.2016.05.003 |
[15] |
Kang S C, Cong Z Y.2016. Atmospheric black carbon and its effects on cryosphere[J]. Advances in Climate Change Research, 7(3): 113-114.
doi: 10.1016/j.accre.2016.09.005 |
[16] |
Kang S C, Huang J, Wang F Y, et al.2016. Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau[J]. Environmental Science & Technology, 50(6): 2859-2869.
doi: 10.1021/acs.est.5b04172 pmid: 26878654 |
[17] |
Kang S C, Xu Y W, You Q L, et al.2010. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 5(1): 015101.
doi: 10.1088/1748-9326/5/1/015101 |
[18] |
Li C L, Bosch C, Kang S C, et al.2016. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers[J]. Nature Communications, 7: 12574.
doi: 10.1038/ncomms12574 pmid: 4996979 |
[19] |
Lüthi Z L, Škerlak B, Kim S-W, et al.2015. Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas[J]. Atmospheric Chemistry and Physics, 15(11): 6007-6021.
doi: 10.5194/acpd-14-28105-2014 |
[20] |
Marcella M P, Eltahir E A B.2010. Effects of mineral aerosols on the summertime climate of southwest Asia: Incorporating subgrid variability in a dust emission scheme[J]. Journal of Geophysical Research: Atmospheres, 115(D18): D18203.
doi: 10.1029/2010JD014036 |
[21] |
Matthew J, Susan K, Kang S C, et al.2016. Tibetan Plateau Geladaindong black carbon ice core record (1843-1982): Recent increases due to higher emissions and lower snow accumulation[J]. Advances in Climate Change Research, 7(3): 132-138.
doi: 10.1016/j.accre.2016.07.002 |
[22] |
Nair V S, Solmon F, Giorgi F, et al.2012. Simulation of south Asian aerosols for regional climate studies[J]. Journal of Geophysical Research: Atmospheres, 117(D4): D04209.
doi: 10.1029/2011JD016711 |
[23] |
Pal J S, Giorgi F, Bi X Q, et al.2007. Regional climate modeling for the developing World: The ICTP RegCM3 and RegCNET[J]. Bulletin of the American Meteorological Society, 88(9): 1395-1409.
doi: 10.1175/BAMS-88-9-1395 |
[24] |
Qian Y, Yasunari T J, Doherty S J, et al.2015. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact[J]. Advances in Atmospheric Sciences, 32(1): 64-91.
doi: 10.1007/s00376-014-0010-0 |
[25] |
Ramanathan V, Carmichael G.2008. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 1: 221-227.
doi: 10.1038/ngeo156 |
[26] |
Ramanathan V, Ramana M V, Roberts G, et al.2007. Warming trends in Asia amplified by brown cloud solar absorption[J]. Nature, 448: 575-578.
doi: 10.1038/nature06019 pmid: 17671499 |
[27] |
Solmon F, Elguindi N, Mallet M.2012. Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model[J]. Climate Research, 52: 97-113.
doi: 10.3354/cr01039 |
[28] |
Xia X G, Zong X M, Cong Z Y, et al.2011. Baseline continental aerosol over the central Tibetan plateau and a case study of aerosol transport from South Asia[J]. Atmospheric Environment, 45(39): 7370-7378.
doi: 10.1016/j.atmosenv.2011.07.067 |
[29] |
Yang J H, Duan K Q, Kang S C, et al.2017. Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain[J]. Climate Dynamics, 48(9-10): 2901-2917.
doi: 10.1007/s00382-016-3240-2 |
[30] |
Yang J H, Kang S C, Ji Z M, et al.2018. Modeling the origin of anthropogenic black carbon and its climatic effect over the Tibetan Plateau and surrounding regions[J]. Journal of Geophysical Research: Atmospheres, 123(2): 671-692.
doi: 10.1002/2017JD027282 |
[31] |
Zhang D F, Zakey A S, Gao X J, et al.2009. Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model[J]. Atmospheric Chemistry and Physics, 9(4): 1095-1110.
doi: 10.5194/acpd-8-4625-2008 |
[32] |
Zhang Y L, Kang S C, Sprenger M, et al.2018. Black carbon and mineral dust in snow cover on the Tibetan Plateau[J]. The Cryosphere, 12(2): 413-431.
doi: 10.5194/tc-12-413-2018 |
[1] | 孙赫, 苏凤阁. 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J]. 地理科学进展, 2020, 39(7): 1126-1139. |
[2] | 陈瑞, 杨梅学, 万国宁, 王学佳. 基于水热变化的青藏高原土壤冻融过程研究进展[J]. 地理科学进展, 2020, 39(11): 1944-1958. |
[3] | 王婧, 李海蓉, 杨林生. 青藏高原大骨节病流行区环境、食物及人群硒水平研究[J]. 地理科学进展, 2020, 39(10): 1677-1686. |
[4] | 周玉科. 青藏高原植被NDVI对气候因子响应的格兰杰效应分析[J]. 地理科学进展, 2019, 38(5): 718-730. |
[5] | 徐明, 石玉立, 王彬. 高分辨率青藏高原历史月降水数据重建[J]. 地理科学进展, 2018, 37(7): 923-932. |
[6] | 朱燕, 侯光良, 兰措卓玛, 高靖易, 庞龙辉. 基于GIS的青藏高原史前交通路线与分区分析[J]. 地理科学进展, 2018, 37(3): 438-449. |
[7] | 张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37(2): 214-223. |
[8] | 朱艳欣, 桑燕芳. 青藏高原降水季节分配的空间变化特征[J]. 地理科学进展, 2018, 37(11): 1533-1544. |
[9] | 刘翀, 朱立平, 王君波, 乔宝晋, 鞠建廷, 黄磊. 基于MODIS的青藏高原湖泊透明度遥感反演[J]. 地理科学进展, 2017, 36(5): 597-609. |
[10] | 王婷. 2009-2015年国际青藏高原研究文献计量分析——基于SCIE和ESI数据[J]. 地理科学进展, 2017, 36(4): 500-512. |
[11] | 吴致蕾, 刘峰贵, 张镱锂, 陈琼, 周强, 杨登兴. 清代青藏高原东北部河湟谷地林草地覆盖变化[J]. 地理科学进展, 2016, 35(6): 768-778. |
[12] | 马文勇, 王训明. 基于高光谱分析的草地叶绿素含量估算研究进展[J]. 地理科学进展, 2016, 35(1): 25-34. |
[13] | 罗静, 陈琼, 刘峰贵, 张镱锂, 周强. 青藏高原河谷地区历史时期耕地格局重建方法探讨——以河湟谷地为例[J]. 地理科学进展, 2015, 34(2): 207-. |
[14] | 勾鹏, 叶庆华, 魏秋方. 2000-2013年西藏纳木错湖冰变化及其影响因素[J]. 地理科学进展, 2015, 34(10): 1241-1249. |
[15] | 姚檀栋. “第三极环境(TPE)”国际计划——应对区域未来环境生态重大挑战问题的国际计划①[J]. 地理科学进展, 2014, 33(7): 884-892. |
|