地理科学进展 ›› 2018, Vol. 37 ›› Issue (3): 342-351.doi: 10.18306/dlkxjz.2018.03.005
收稿日期:
2017-08-22
修回日期:
2017-12-21
出版日期:
2018-03-28
发布日期:
2018-03-28
作者简介:
作者简介:刘希林(1963-),男,湖南新邵人,博士,教授,博士生导师,主要从事地貌灾害过程及评估和预测研究,E-mail:
基金资助:
Received:
2017-08-22
Revised:
2017-12-21
Online:
2018-03-28
Published:
2018-03-28
Supported by:
摘要:
典型的崩岗具有“圆形露天剧场”般的沟头,发育在深厚的红色花岗岩风化壳上,通常包括集水坡面、崩壁、崩积体、沟道、洪积扇5个地貌组成部分;崩壁自上而下可分为表土层、风化红粘土层(红土层)、风化砂质红粘土层(砂土层)、风化粗碎屑层(碎屑层)。中国的崩岗与马达加斯加的lavaka属于同类地貌,两者具有地貌学上的可比性。崩岗群是劣地的表现形式之一,但与欧洲的badland有不同的侵蚀过程,也不同于意大利和巴西的两种沟谷侵蚀地貌calanchi和vocoroca。崩岗主要发育在华南和东南热带和亚热带湿润季风气候区中等偏缓的丘陵坡地上,由沟谷侵蚀发展而成,是沟谷侵蚀的高级阶段。崩岗沟道侵蚀产沙量占崩岗沟谷流域侵蚀产沙量的一半以上,其中沟道沟壁崩塌侵蚀产沙量与沟床下切侵蚀产沙量又各占崩岗沟道侵蚀产沙量的一半左右。野外人工模拟降雨试验是研究崩岗流域侵蚀、产流和产沙过程的有效手段。崩岗流域侵蚀产沙量可以通过崩岗沟谷和洪积扇地形测量加以估算。
刘希林. 全球视野下崩岗侵蚀地貌及其研究进展[J]. 地理科学进展, 2018, 37(3): 342-351.
Xilin LIU. Benggang erosion landform and research progress in a global perspective[J]. PROGRESS IN GEOGRAPHY, 2018, 37(3): 342-351.
[1] |
陈培波, 刘希林. 2015. 中国崩岗研究进展的文献计量分析[J]. 热带地理, 35(6): 895-900.
doi: 10.13284/j.cnki.rddl.002785 |
[Chen P B, Liu X L.2015. Bibliometric analysis of the progress in benggang research in China[J]. Tropical Geography, 35(6): 895-900.]
doi: 10.13284/j.cnki.rddl.002785 |
|
[2] |
冯明汉, 廖纯艳, 李双喜, 等. 2009. 我国南方崩岗侵蚀现状调查[J]. 人民长江, 40(8): 66-68, 75.
doi: 10.3969/j.issn.1001-4179.2009.08.018 |
[Feng M H, Liao C Y, Li S X, et al.2009. Investigation on status of hill collapsing and soil erosion in southern China[J]. Yangtze River, 40(8): 66-68, 75.]
doi: 10.3969/j.issn.1001-4179.2009.08.018 |
|
[3] |
黄炎和, 赵淦, 蒋芳市, 等. 2015. 崩岗崩积体陡坡侵蚀的水动力学特征[J]. 森林与环境学报, 35(4): 304-309.
doi: 10.13324/j.cnki.jfcf.2015.04.003 |
[Huang Y H, Zhao G, Jiang F S, et al.2015. Hydrodynamic characteristics in steep colluvial deposits slope[J]. Journal of Forest and Environment, 35(4): 304-309.]
doi: 10.13324/j.cnki.jfcf.2015.04.003 |
|
[4] |
蒋芳市, 黄炎和, 林金石, 等. 2014. 多场次降雨对崩岗崩积体细沟侵蚀的影响[J]. 中国水土保持科学, 12(6): 1-7.
doi: 10.3969/j.issn.1672-3007.2014.06.001 |
[Jiang F S, Huang Y H, Lin J S, et al.2014. Effects of repetitive rainfalls on rill erosion of coluvial deposit in granite slope collapse[J]. Science of Soil and Water Conservation, 12(6): 1-7.]
doi: 10.3969/j.issn.1672-3007.2014.06.001 |
|
[5] | 雷廷武, 张晴雯, 闫丽娟. 2009. 细沟侵蚀物理模型[M]. 北京: 科学出版社. |
[Lei T W, Zhang Q W, Yan L J.2009. Xigou qinshi wuli moxing[M]. Beijing, China: Science Press.] | |
[6] |
雷廷武, 张晴雯, 赵军, 等. 2002. 细沟侵蚀动力过程输沙能力试验研究[J]. 土壤学报, 39(4): 476-482.
doi: 10.3321/j.issn:0564-3929.2002.04.004 |
[Lei T W, Zhang Q W, Zhao J, et al.2002. Laboratory study on sediment transport capacity in the dynamic process of rill erosion[J]. Acta Pedologica Sinica, 39(4): 476-482.]
doi: 10.3321/j.issn:0564-3929.2002.04.004 |
|
[7] | 刘希林, 唐川, 张大林. 2015. 野外模拟崩岗崩积体坡面产流过程及水分分布[J]. 农业工程学报, 31(11): 179-185. |
[Liu X L, Tang C, Zhang D L.2015. Simulated runoff processes on colluvial deposits of Liantanggang benggang and their water distributions[J]. Transactions of the Chinese Society of Agricultural Engineering, 31(11): 179-185.] | |
[8] | 刘希林, 张大林, 贾瑶瑶. 2013. 崩岗地貌发育的土体物理性质及其土壤侵蚀意义: 以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 28(7): 802-811. |
[Liu X L, Zhang D L, Jia Y Y.2013. Soil physical properties of collapsing hill and gully and their indications for soil erosion: An example of Liantanggang collapsing hill and gully in Wuhua county of Guangdong[J]. Advances in Earth Science, 28(7): 802-811.] | |
[9] | 刘希林, 张大林, 唐川. 2016. 基于三维激光扫描的崩岗沟道侵蚀与坡向发育及其侵蚀量计算[J]. 应用基础与工程科学学报, 24(5): 914-923. |
[Liu X L, Zhang D L, Tang C.2016. Erosion volume calculation of benggang gully and their slope development based on 3D laser scanning[J]. Journal of Basic Science and Engineering, 24(5): 914-923.] | |
[10] | 邱锦安, 刘希林. 2017. 基于知识图谱的中国崩岗研究现状及综合分析[J]. 中国水土保持科学, 15(3): 139-148. |
[Qiu J A, Liu X L.2017. Status and comprehensive analysis of benggang research in China based on knowledge maps[J]. Science of Soil and Water Conservation, 15(3): 139-148.] | |
[11] |
邱世钧. 1999. 切割下坠: 砂页岩地区崩岗源头墙壁后退方式之一[J]. 水土保持通报, 19(6): 20-22.
doi: 10.3969/j.issn.1000-288X.1999.06.005 |
[Qiu S J.1999. Cutting-toppling: One of patterns of slop disintegration erosion[J]. Bulletin of Soil and Water Conservation, 19(6): 20-22.]
doi: 10.3969/j.issn.1000-288X.1999.06.005 |
|
[12] | 阮伏水. 1996. 福建崩岗沟侵蚀机理探讨[J]. 福建师范大学学报: 自然科学版, 12(增刊): 24-31. |
[Ruan F S.1996. Study on erosion mechanism of collapse gully in Fujian[J]. Journal of Fujian Teachers University: Natural Science, 12(S): 24-31.] | |
[13] | 吴正. 1999. 地貌学导论[M]. 广州: 广东高等教育出版社. |
[Wu Z.1999. Dimaoxue daolun[M]. Guangzhou, China: Guangdong Higher Education Press.] | |
[14] | 吴志峰, 钟伟青. 1997. 崩岗灾害地貌及其环境效应[J]. 生态科学, 16(2): 91-96. |
[Wu Z F, Zhong W Q.1997. Gravity gully erosion and it's influence[J]. Ecologic Science, 16(2): 91-96.] | |
[15] |
张大林, 刘希林. 2014. 崩岗泥砂流粒度特性及流体类型分析: 以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 29(7): 810-818.
doi: 10.11867/j.issn.1001-8166.2014.07.0810 |
[Zhang D L, Liu X L.2014. Analysis of the grain size properties and flow body classes of the mud sand flow: An example of Liantanggang collapsing hill and gully in Wuhua county of Guangdong[J]. Advances in Earth Science, 29(7): 810-818.]
doi: 10.11867/j.issn.1001-8166.2014.07.0810 |
|
[16] | 赵辉, 罗建民. 2006. 湖南崩岗侵蚀成因及综合防治体系探讨[J]. 中国水土保持,(5): 1-3, 20. |
[Zhao H, Luo J M.2006. Analysis on genesis erosion of dilapidated granite and approach to integrated system of prevention and control in Hunan[J]. Soil and Water Conservation in China,(5): 1-3, 20.] | |
[17] | 中国科学院《中国自然地理》编辑委员会. 1980. 中国自然地理: 地貌[M]. 北京: 科学出版社. |
[China Physical Geography Editorial Committee of Chinese Academy of Sciences. 1980. Zhongguo ziran dili: Dimao[M]. Beijing, China: Science Press.] | |
[18] | 周红艺, 李辉霞, 叶奇, 等. 2016. 华南活动崩岗崩壁土体裂隙发育规律试验研究[J]. 水土保持研究, 23(1): 338-342. |
[Zhou H Y, Li H X, Ye Q, et al.2016. Simulation of morphological development of soil cracks in the collapsing hill region of southern China[J]. Research of Soil and Water Conservation, 23(1): 338-342.] | |
[19] |
Aksoy H, Kavvas M L.2005. A review of hillslope and watershed scale erosion and sediment transport models[J]. Catena, 64(2-3): 247-271.
doi: 10.1016/j.catena.2005.08.008 |
[20] |
Aksoy H, Unal N E, Cokgor S, et al.2012. A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two-dimensional flume[J]. Catena, 98: 63-72.
doi: 10.1016/j.catena.2012.06.009 |
[21] |
Bacellar L de A P, Coelho Netto A L, Lacerda W A.2005. Controlling factors of gullying in the Maracujá catchment, southeastern Brazil[J]. Earth Surface Processes and Landforms, 30(11): 1369-1385.
doi: 10.1002/esp.1193 |
[22] |
Blijenberg H M, de Graaf P J, Hendriks M R, et al.1996. Investigation of infiltration characteristics and debris flow initiation conditions in debris flow source areas using a rainfall simulator[J]. Hydrological Processes, 10(11): 1527-1543.
doi: 10.1002/(ISSN)1099-1085 |
[23] |
Boardman J.2006. Soil erosion science: Reflections on the limitations of current approaches[J]. Catena, 68(2-3): 73-86.
doi: 10.1016/j.catena.2006.03.007 |
[24] |
Bocco G.1991. Gully erosion: Processes and models[J]. Progress in Physical Geography, 15(4): 392-406.
doi: 10.1177/030913339101500403 |
[25] |
Bouma N A, Imeson A C.2000. Investigation of relationships between measured field indicators and erosion processes on badland surfaces at Petrer, Spain[J]. Catena, 40(2): 147-171.
doi: 10.1016/S0341-8162(99)00046-6 |
[26] |
Cao L X, Liang Y, Wang Y, et al.2015. Runoff and soil loss from Pinus massoniana forest in southern China after simulated rainfall[J]. Catena, 129: 1-8.
doi: 10.1016/j.catena.2015.02.009 |
[27] |
Caraballo-Arias N A, Conoscenti C, Di Stefano C, et al.2014. Testing GIS-morphometric analysis of some Sicilian badlands[J]. Catena, 113: 370-376.
doi: 10.1016/j.catena.2013.08.021 |
[28] |
Cerdà A, Carcía-Fayos P.1997. The influence of slope angle on sediment, water and seed losses on badland landscapes[J]. Geomorphology, 18(2): 77-90.
doi: 10.1016/s0169-555x(96)00019-0 |
[29] |
Cox R, Zentner D B, Rakotondrazafy A F M, et al.2010. Shakedown in Madagascar: Occurrence of lavakas (erosional gullies) associated with seismic activity[J]. Geology, 38(2): 179-182.
doi: 10.1130/G30670.1 |
[30] |
diCenzo P D, Luk S H.1997. Gully erosion and sediment transport in a small subtropical catchment, South China[J]. Catena, 29(2): 161-176.
doi: 10.1016/S0341-8162(96)00053-7 |
[31] |
Gallart F, Marignani M, Pérez-Gallego N, et al.2013. Thirty years of studies on badlands, from physical to vegetational approaches: A succinct review[J]. Catena, 106: 4-11.
doi: 10.1016/j.catena.2012.02.008 |
[32] |
Govers G.1992. Relationship between discharge, velocity and flow area for rills eroding loose, non-layered materials[J]. Earth Surface Processes and Landforms, 17(5): 515-528.
doi: 10.1002/esp.3290170510 |
[33] |
Huang J, Wu P T, Zhao X N.2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments[J]. Catena, 104: 93-102.
doi: 10.1016/j.catena.2012.10.013 |
[34] |
Iserloh T, Ries J B, Arnáez J, et al.2013. European small portable rainfall simulators: A comparison of rainfall characteristics[J]. Catena, 110: 100-112.
doi: 10.1016/j.catena.2013.05.013 |
[35] |
Jiang F S, Huang Y H, Wang M K, et al.2014. Effects of rainfall intensity and slope gradient on steep colluvial deposit erosion in southeast China[J]. Soil Science Society of America Journal, 78(5): 1741-1752.
doi: 10.2136/sssaj2014.04.0132 |
[36] |
Lin J S, Huang Y H, Wang M K, et al.2015. Assessing the sources of sediment transported in gully systems using a fingerprinting approach: An example from south-east China[J]. Catena, 129: 9-17.
doi: 10.1016/j.catena.2015.02.012 |
[37] |
Liu X L, Qiu J A, Zhang D L.2018. Characteristics of slope runoff and soil water content in benggang colluvium under simulated rainfall[J]. Journal of Soils and Sediments, 18(1): 39-48.
doi: 10.1007/s11368-017-1742-0 |
[38] |
Luffman I E, Nandi A, Spiegel T.2015. Gully morphology, hillslope erosion, and precipitation characteristics in the Appalachian valley and Ridge province, southeastern USA[J]. Catena, 133: 221-232.
doi: 10.1016/j.catena.2015.05.015 |
[39] |
Luk S H, Yao Q Y, Gao J Q, et al.1997. Environmental analysis of soil erosion in Guangdong province: A Deqing case study[J]. Catena, 29(2): 97-113.
doi: 10.1016/S0341-8162(96)00049-5 |
[40] |
Martínez-Casanovas J A, Ramos M C, García-Hernández D.2009. Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain)[J]. Earth Surface Processes and Landforms, 34(14): 1927-1937.
doi: 10.1002/esp.1870 |
[41] |
Martínez-Murillo J F, Nadal-Romero E, Regüés D, et al.2013. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review[J]. Catena, 106: 101-112.
doi: 10.1016/j.catena.2012.06.001 |
[42] |
Moretti S, Rodolfi G.2000. A typical “calanchi” landscape on the Eastern Apennine margin (Atri, Central Italy): Geomorphological features and evolution[J]. Catena, 40(2): 217-228.
doi: 10.1016/S0341-8162(99)00086-7 |
[43] |
Neugirg F, Stark M, Kaiser A, et al.2016. Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys[J]. Catena, 269: 8-22.
doi: 10.1016/j.geomorph.2016.06.027 |
[44] |
Newesely C, Leitinger G, Zimmerhofer W, et al.2015. Rain simulation in patchy landscapes: Insights from a case study in the Central Alps[J]. Catena, 127: 1-8.
doi: 10.1016/j.catena.2014.11.013 |
[45] |
Ni H Y.2015. Experimental study on initiation of gully-type debris flow based on artificial rainfall and channel runoff[J]. Environmental Earth Sciences, 73(10): 6213-6227.
doi: 10.1007/s12665-014-3845-x |
[46] |
Poesen J, Nachtergaele J, Verstraeten G, et al.2003. Gully erosion and environmental change: Importance and research needs[J]. Catena, 50(2-4): 91-133.
doi: 10.1016/S0341-8162(02)00143-1 |
[47] |
Seginer I.1966. Gully development and sediment yield[J]. Journal of Hydrology, 4: 236-253.
doi: 10.1016/0022-1694(66)90082-5 |
[48] |
Sirvent J, Desir G, Gutierrez M, et al.1997. Erosion rates in badland areas recorded by collectors, erosion pins and profilometer techniques (Ebro Basin, NE-Spain)[J]. Geomorphology, 18(2): 61-75.
doi: 10.1016/S0169-555X(96)00023-2 |
[49] |
Solé-Benet A, Calvo A, Cerda A, et al.1997. Influences of micro-relief patterns and plant cover on runoff related processes in badlands from Tabernas (SE Spain)[J]. Catena, 31(1-2): 23-38.
doi: 10.1016/S0341-8162(97)00032-5 |
[50] |
Stroosnijder L.2005. Measurement of erosion: Is it possible[J]. Catena, 64(2-3): 162-173.
doi: 10.1016/j.catena.2005.08.004 |
[51] |
Voarintsoa N R G, Cox R, Razanatseheno M O M, et al.2012. Relation between bedrock geology, topography and lavaka distribution in Madagascar[J]. South African Journal of Geology, 115(2): 225-250.
doi: 10.2113/gssajg.115.225 |
[52] |
Wells N A, Andriamihaja B, Rakotovololona H F S.1991. Patterns of development of lavaka, Madagascar’s unusual gullies[J]. Earth Surface Processes and Landforms, 16(3): 189-206.
doi: 10.1002/esp.3290160302 |
[53] |
Wells R R, Momm H G, Rigby J R, et al.2013. An empirical investigation of gully widening rates in upland concentrated flows[J]. Catena, 101: 114-121.
doi: 10.1016/j.catena.2012.10.004 |
[54] |
Wildhaber Y S, Bänninger D, Burri K, et al.2012. Evaluation and application of a portable rainfall simulator on subalpine grassland[J]. Catena, 91: 56-62.
doi: 10.1016/j.catena.2011.03.004 |
[55] |
Xu J X.1996. Benggang erosion: The influencing factors[J]. Catena, 27(3-4): 249-263.
doi: 10.1016/0341-8162(96)00014-8 |
[1] | 刘淑燕, 余新晓, 信忠保, 李庆云, 李海光, 雷凤燕. 黄土丘陵沟壑区典型流域土地利用变化对水沙关系的影响[J]. 地理科学进展, 2010, 29(5): 565-571. |
[2] | 郝芳华, 陈利群, 刘昌明, 张雪松. 降雨的空间不均性对模拟产流量和产沙量不确定的影响[J]. 地理科学进展, 2003, 22(5): 446-453. |
|