地理科学进展 ›› 2018, Vol. 37 ›› Issue (2): 214-223.doi: 10.18306/dlkxjz.2018.02.004
收稿日期:
2017-09-25
修回日期:
2018-01-29
出版日期:
2018-02-28
发布日期:
2018-02-28
作者简介:
作者简介:张国庆(1978-),男,陕西武功人,博士,副研究员,主要从事冰冻圈遥感研究,E-mail:
基金资助:
Received:
2017-09-25
Revised:
2018-01-29
Online:
2018-02-28
Published:
2018-02-28
Supported by:
摘要:
青藏高原位于中国西南部、亚洲中部,平均海拔高程大于4000 m,面积约300万km2,是“世界屋脊”,与周边地区一起常被称为地球的“第三极”。青藏高原分布着约1200个面积大于1 km2的湖泊,占中国湖泊数量与面积的一半;同时也是黄河、长江、恒河、印度河等大河的源头,被称为“亚洲水塔”。近几十年来,在全球变暖的背景下,青藏高原升温更加突出,其能量与水循环发生了显著变化,气候趋于暖湿化,冰川加速消融,湖面水位上升。湖泊是气候变化的重要指标,青藏高原湖泊分布密集、人为活动影响较小,多源遥感数据的广泛应用,为监测高原湖泊变化提供了难得的契机。本文依托国家自然科学基金青年项目“基于多源遥感的青藏高原内流区湖泊水量变化及水体相态转换研究(2000-2009年)”,主要研究进展为:初步查明了西藏高原的湖泊数量、面积及水位变化与时空格局,以及湖泊水量变化与水量平衡;探讨了湖泊变化对气候变化的响应。目前对青藏高原湖泊的变化及驱动因素虽有一些认识,但其定量的水量平衡及驱动机制还有待于进一步研究。这对了解世界第三极、一带一路国家和地区水资源状况与变化、生态文明和生态安全屏障建设具有重要的意义,同时也可为第三极国家公园的建立提供重要的科学基础。
张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37(2): 214-223.
Guoqing ZHANG. Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations[J]. PROGRESS IN GEOGRAPHY, 2018, 37(2): 214-223.
[1] |
骆剑承, 盛永伟, 沈占锋, 等. 2009. 分步迭代的多光谱遥感水体信息高精度自动提取[J]. 遥感学报, 13(4): 610-615.
doi: 10.11834/jrs.20090405 |
[Luo J C, Sheng Y W, Shen Z F, et al.2009. Automatic and high-precise extraction for water information from multispectral images with the step-by-step iterative transformation mechanism[J]. Journal of Remote Sensing, 13(4): 610-615.]
doi: 10.11834/jrs.20090405 |
|
[2] |
Asoka A, Gleeson T, Wada Y, et al.2017. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India[J]. Nature Geoscience, 10(2): 109-117.
doi: 10.1038/ngeo2869 |
[3] |
Barnett T P, Adam J C, Lettenmaier D P.2005. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 438: 303-309.
doi: 10.1038/nature04141 |
[4] |
Behrangi A, Gardner A S, Reager J T, et al.2017. Using GRACE to constrain precipitation amount over cold mountainous basins[J]. Geophysical Research Letters, 44(1): 219-227.
doi: 10.1002/2016GL071832 |
[5] |
Biskop S, Maussion F, Krause P, et al.2016. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau[J]. Hydrology and Earth System Sciences, 20(1): 209-225.
doi: 10.5194/hess-20-209-2016 |
[6] |
Bolch T, Yao T D, Kang S C, et al.2010. A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976-2009[J]. The Cryosphere, 4(3): 419-433.
doi: 10.5194/tc-4-419-2010 |
[7] |
Che T, Li X, Jin R, et al.2008. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 49: 145-154.
doi: 10.3189/172756408787814690 |
[8] |
Chen J L, Famigliett J S, Scanlon B R, et al.2016. Groundwater storage changes: Present status from GRACE observations[J]. Surveys in Geophysics, 37(2): 397-417.
doi: 10.1007/s10712-015-9332-4 |
[9] |
Coll C, Caselles V, Galve J, et al.2005. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data[J]. Remote Sensing of Environment, 97(3): 288-300.
doi: 10.1016/j.rse.2005.05.007 |
[10] |
Crétaux J-F, Jelinski W, Calmant S, et al.2011. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data[J]. Advances in Space Research, 47(9): 1497-1507.
doi: 10.1016/j.asr.2011.01.004 |
[11] |
Crosman E T, Horel J D.2009. MODIS-derived surface temperature of the Great Salt Lake[J]. Remote Sensing of Environment, 113(1): 73-81.
doi: 10.1016/j.rse.2008.08.013 |
[12] |
Dai L Y, Che T, Ding Y J.2015. Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China[J]. Remote Sensing, 7(6): 7212-7230.
doi: 10.3390/rs70607212 |
[13] |
Feyisa G L, Meilby H, Fensholt R, et al.2014. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 140: 23-35.
doi: 10.1016/j.rse.2013.08.029 |
[14] |
Gardner A S, Moholdt G, Cogley J G, et al.2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 340: 852-857.
doi: 10.1126/science.1234532 pmid: 23687045 |
[15] |
Immerzeel W W, Van Beek L P H, Bierkens M F P.2010. Climate change will affect the Asian water towers[J]. Science, 328: 1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
[16] | IPCC. 2014. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge, UK: Cambridge University Press, 1132. |
[17] |
Jacob T, Wahr J, Pfeffer W T, et al.2012. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 482: 514-518.
doi: 10.1038/nature10847 |
[18] |
Ji L, Zhang L, Wylie B.2009. Analysis of dynamic thresholds for the normalized difference water index[J]. Photogrammetric Engineering & Remote Sensing, 75(11): 1307-1317.
doi: 10.14358/PERS.75.11.1307 |
[19] |
Jiang L G, Nielsen K, Andersen O B, et al.2017. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data[J]. Journal of Hydrology, 544: 109-124.
doi: 10.1016/j.jhydrol.2016.11.024 |
[20] |
Kääb A, Berthier E, Nuth C, et al.2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas[J]. Nature, 488: 495-498.
doi: 10.1038/nature11324 pmid: 200101 |
[21] |
Kleinherenbrink M, Lindenbergh R C, Ditmar P G.2015. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms[J]. Journal of Hydrology, 521: 119-131.
doi: 10.1016/j.jhydrol.2014.11.063 |
[22] |
Kropáček J, Maussion F, Chen F, et al.2013. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data[J]. The Cryosphere, 7(1): 287-301.
doi: 10.5194/tc-7-287-2013 |
[23] |
Lei Y B, Yang K, Wang B, et al.2014. Response of inland lake dynamics over the Tibetan Plateau to climate change[J]. Climatic Change, 125(2): 281-290.
doi: 10.1007/s10584-014-1175-3 |
[24] |
Lei Y B, Yao T D, Yi C L, et al.2012. Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau[J]. Journal of Glaciology, 58(207): 177-184.
doi: 10.3189/2012JoG11J025 |
[25] |
Li B Q, Zhang J Y, Yu Z B, et al.2017. Climate change driven water budget dynamics of a Tibetan inland lake[J]. Global and Planetary Change, 150: 70-80.
doi: 10.1016/j.gloplacha.2017.02.003 |
[26] |
Li G, Lin H.2017. Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential Bistatic SAR interferometry[J]. Global and Planetary Change, 149: 177-190.
doi: 10.1016/j.gloplacha.2016.12.018 |
[27] |
Li J L, Sheng Y W.2012. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: A case study in the Himalayas[J]. International Journal of Remote Sensing, 33(16): 5194-5213.
doi: 10.1080/01431161.2012.657370 |
[28] |
Li Y K, Liao J J, Guo H D, et al.2014. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010[J]. PLoS One, 9(11): e111890.
doi: 10.1371/journal.pone.0111890 pmid: 25372787 |
[29] |
Li Z W, Shen H F, Li H F, et al.2017. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery[J]. Remote Sensing of Environment, 191: 342-358.
doi: 10.1016/j.rse.2017.01.026 |
[30] |
Luo D L, Wu Q B, Jin H J, et al.2016. Recent changes in the active layer thickness across the northern hemisphere[J]. Environmental Earth Sciences, 75: 555.
doi: 10.1007/s12665-015-5229-2 |
[31] |
Ma R H, Duan H T, Hu C M, et al.2010. A half-century of changes in China's lakes: Global warming or human influence[J]. Geophysical Research Letters, 37(24): L24106.
doi: 10.1029/2010GL045514 |
[32] |
Ma R H, Yang G S, Duan H T, et al.2011. China's lakes at present: Number, area and spatial distribution[J]. Science China Earth Sciences, 54(2): 283-289.
doi: 10.1007/s11430-010-4052-6 |
[33] |
McFeeters S K.1996. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 17(7): 1425-1432.
doi: 10.1080/01431169608948714 |
[34] |
Neckel N, Kropáček J, Bolch T, et al.2014. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements[J]. Environmental Research Letters, 9(1): 014009.
doi: 10.1088/1748-9326/9/1/014009 |
[35] |
Nelson F E, Shiklomanov N I, Christiansen H H, et al.2004. The Circumpolar-Active-Layer-Monitoring (CALM) workshop: Introduction[J]. Permafrost and Periglacial Processes, 15(2): 99-101.
doi: 10.1002/(ISSN)1099-1530 |
[36] |
Oelke C, Zhang T J.2007. Modeling the active-layer depth over the Tibetan Plateau[J]. Arctic, Antarctic, and Alpine Research, 39(4): 714-722.
doi: 10.1657/1523-0430(06-200)[OELKE]2.0.CO;2 |
[37] |
O'Reilly C M, Sharma S, Gray D K, et al.2015. Rapid and highly variable warming of lake surface waters around the globe[J]. Geophysical Research Letters, 42(24): 10773-10781.
doi: 10.1002/2015GL066235 |
[38] |
Otsu N.1979. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66.
doi: 10.1109/TSMC.1979.4310076 |
[39] |
Pang Q Q, Cheng G D, Li S X, et al.2009. Active layer thickness calculation over the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 57(1): 23-28.
doi: 10.1016/j.coldregions.2009.01.005 |
[40] |
Pekel J-F, Cottam A, Gorelick N, et al.2016. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 540: 418-422.
doi: 10.1038/nature20584 pmid: 27926733 |
[41] |
Pritchard H D.2017. Asia’s glaciers are a regionally important buffer against drought[J]. Nature, 545: 169-174.
doi: 10.1038/nature22062 pmid: 28492255 |
[42] |
Qiu J.2008. China: The third pole[J]. Nature, 454: 393-396.
doi: 10.1038/454393a |
[43] |
Reinart A, Reinhold M.2008. Mapping surface temperature in large lakes with MODIS data[J]. Remote Sensing of Environment, 112(2): 603-611.
doi: 10.1016/j.rse.2007.05.015 |
[44] |
Savtchenko A, Ouzounov D, Ahmad S, et al.2004. Terra and aqua MODIS products available from NASA GES DAAC[J]. Advances in Space Research, 34(4): 710-714.
doi: 10.1016/j.asr.2004.03.012 |
[45] |
Schneider P, Hook S J, Radocinski R G, et al.2009. Satellite observations indicate rapid warming trend for lakes in California and Nevada[J]. Geophysical Research Letters, 36(22): L22402.
doi: 10.1029/2009GL040846 |
[46] |
Song C Q, Huang B, Ke L H.2013. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J]. Remote Sensing of Environment, 135: 25-35.
doi: 10.1016/j.rse.2013.03.013 |
[47] |
Song C Q, Huang B, Richards K, et al.2014. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes[J]. Water Resources Research, 50(4): 3170-3186.
doi: 10.1002/2013WR014724 |
[48] |
Stendel M, Christensen J H.2002. Impact of global warming on permafrost conditions in a coupled GCM[J]. Geophysical Research Letters, 29(13): 1632.
doi: 10.1029/2001GL014345 |
[49] |
Tao S L, Fang J Y, Zhao X, et al.2015. Rapid loss of lakes on the Mongolian Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(7): 2281-2286.
doi: 10.1073/pnas.1411748112 pmid: 25646423 |
[50] |
Tong K, Su F G, Xu B Q.2016. Quantifying the contribution of glacier meltwater in the expansion of the largest lake in Tibet[J]. Journal of Geophysical Research: Atmospheres, 121(19): 11158-11173.
doi: 10.1002/2016JD025424 |
[51] |
Urban T J, Schutz B E, Neuenschwander A L.2008. A survey of ICESat coastal altimetry applications: Continental coast, open ocean island, and inland river[J]. Terrestrial, Atmospheric and Oceanic Sciences, 19(1-2): 1-19.
doi: 10.3319/TAO.2008.19.1-2.1(SA) |
[52] |
Wan Z M, Dozier J.1996. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892-905.
doi: 10.1109/36.508406 |
[53] |
Wan Z M, Zhang Y L, Li Z-L, et al.2002. Preliminary estimate of calibration of the moderate resolution imaging spectroradiometer thermal infrared data using Lake Titicaca[J]. Remote Sensing of Environment, 80(3): 497-515.
doi: 10.1016/S0034-4257(01)00327-3 |
[54] |
Wan Z M, Zhang Y L, Zhang Q C, et al.2002. Validation of the land-surface temperature products retrieved from Terra moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 83(1-2): 163-180.
doi: 10.1016/S0034-4257(02)00093-7 |
[55] |
Wu Q B, Hou Y D, Yun H B, et al.2014. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China[J]. Global and Planetary Change, 124: 149-155.
doi: 10.1016/j.gloplacha.2014.09.002 |
[56] |
Wu Y H, Zheng H X, Zhang B, et al.2014. Long-term changes of lake level and water budget in the Nam Co Lake Basin, Central Tibetan Plateau[J]. Journal of Hydrometeorology, 15(3): 1312-1322.
doi: 10.1175/JHM-D-13-093.1 |
[57] |
Xu H Q.2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 27(14): 3025-3033.
doi: 10.1080/01431160600589179 |
[58] |
Yao T D, Pu J C, Lu A X, et al.2007. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions[J]. Arctic, Antarctic, and Alpine Research, 39(4): 642-650.
doi: 10.1657/1523-0430(07-510)[YAO]2.0.CO;2 |
[59] |
Yao T D, Thompson L, Yang W, et al.2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2(9): 663-667.
doi: 10.1038/nclimate1580 |
[60] |
Yi S, Wang Q Y, Sun W K.2016. Basin mass dynamic changes in China from GRACE based on a multibasin inversion method[J]. Journal of Geophysical Research: Solid Earth, 121(5): 3782-3803.
doi: 10.1002/2015JB012608 |
[61] |
Yu J Y, Zhang G Q, Yao T D, et al.2016. Developing daily cloud-free snow composite products from MODIS Terra-Aqua and IMS for the Tibetan Plateau[J]. IEEE Transactions on Geoscience and Remote Sensing, 54(4): 2171-2180.
doi: 10.1109/TGRS.2015.2496950 |
[62] |
Zhang G Q, Li J L, Zheng G X.2017. Lake-area mapping in the Tibetan Plateau: an evaluation of data and methods[J]. International Journal of Remote Sensing, 38(3): 742-772.
doi: 10.1080/01431161.2016.1271478 |
[63] |
Zhang G Q, Xie H J, Duan S Q, et al.2011. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change[J]. Journal of Applied Remote Sensing, 5(1): 053532.
doi: 10.1117/1.3601363 |
[64] |
Zhang G Q, Xie H J, Kang S C, et al.2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009)[J]. Remote Sensing of Environment, 115(7): 1733-1742.
doi: 10.1016/j.rse.2011.03.005 |
[65] |
Zhang G Q, Xie H J, Yao T D, et al.2012. Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010)[J]. Water Resources Research, 48(10): W10529.
doi: 10.1029/2012WR011971 |
[66] |
Zhang G Q, Xie H J, Yao T D, et al.2013. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data[J]. Chinese Science Bulletin, 58(31): 3815-3829.
doi: 10.1007/s11434-013-5818-y |
[67] |
Zhang G Q, Xie H J, Yao T D, et al.2014. Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM)[J]. Journal of Hydrology, 519: 976-987.
doi: 10.1016/j.jhydrol.2014.08.022 |
[68] |
Zhang G Q, Yao T D, Piao S L, et al.2017. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades[J]. Geophysical Research Letters, 44(1): 252-260.
doi: 10.1002/2016GL072033 |
[69] |
Zhang G Q, Yao T D, Shum C K, et al.2017. Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin[J]. Geophysical Research Letters, 44(11): 5550-5560.
doi: 10.1002/2017GL073773 |
[70] |
Zhang G Q, Yao T D, Xie H J, et al.2013. Increased mass over the Tibetan Plateau: From lakes or glaciers[J]. Geophysical Research Letters, 40(10): 2125-2130.
doi: 10.1002/grl.50462 |
[71] |
Zhang G Q, Yao T D, Xie H J, et al.2014a. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J]. Journal of Geophysical Research: Atmospheres, 119(14): 8552-8567.
doi: 10.1002/2014JD021615 |
[72] |
Zhang G Q, Yao T D, Xie H J, et al.2014b. Lakes' state and abundance across the Tibetan Plateau[J]. Chinese Science Bulletin, 59(24): 3010-3021.
doi: 10.1007/s11434-014-0258-x |
[73] |
Zhang G Q, Zheng G X, Gao Y, et al.2017. Automated water classification in the Tibetan Plateau using Chinese GF-1 WFV data[J]. Photogrammetric Engineering & Remote Sensing, 83(7): 509-519.
doi: 10.14358/PERS.83.7.509 |
[74] |
Zhou J, Wang L, Zhang Y S, et al.2015. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003-2012 from a basin-wide hydrological modeling[J]. Water Resources Research, 51(10): 8060-8086.
doi: 10.1002/2014WR015846 |
[75] |
Zhu L P, Xie M P, Wu Y H.2010. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau[J]. Chinese Science Bulletin, 55(13): 1294-1303.
doi: 10.1007/s11434-010-0015-8 |
[76] |
Zhu W B, Lű A F, Jia S F.2013. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products[J]. Remote Sensing of Environment, 130: 62-73.
doi: 10.1016/j.rse.2012.10.034 |
[77] |
Zhu Z, Wang S X, Woodcock C E.2015. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-74-7, 8, and Sentinel 2 images[J]. Remote Sensing of Environment, 159: 269-277.
doi: 10.1016/j.rse.2014.12.014 |
[78] |
Zwally H J, Schutz B, Abdalati W, et al.2002. ICESat's laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 34(3-4): 405-445.
doi: 10.1016/S0264-3707(02)00042-X |
[1] | 姜凯斯,刘正佳,李裕瑞,王永生,王昱. 黄土丘陵沟壑区典型村域土地利用变化及对区域乡村转型发展的启示[J]. 地理科学进展, 2019, 38(9): 1305-1315. |
[2] | 段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8): 1182-1195. |
[3] | 马明国,汤旭光,韩旭军,时伟宇,宋立生,黄静. 西南岩溶地区碳循环观测与模拟研究进展和展望[J]. 地理科学进展, 2019, 38(8): 1196-1205. |
[4] | 郭华, 王灵恩, 马恩朴. 食物系统认知进展及其地理学研究范式探讨[J]. 地理科学进展, 2019, 38(7): 1034-1044. |
[5] | 方佳毅, 史培军. 全球气候变化背景下海岸洪水灾害风险评估研究进展与展望[J]. 地理科学进展, 2019, 38(5): 625-636. |
[6] | 周玉科. 青藏高原植被NDVI对气候因子响应的格兰杰效应分析[J]. 地理科学进展, 2019, 38(5): 718-730. |
[7] | 湛东升, 张文忠, 谌丽, 虞晓芬, 党云晓. 城市公共服务设施配置研究进展及趋向[J]. 地理科学进展, 2019, 38(4): 506-519. |
[8] | 张会, 李铖, 程炯, 吴志峰, 吴艳艳. 基于“H-E-V”框架的城市洪涝风险评估研究进展[J]. 地理科学进展, 2019, 38(2): 175-190. |
[9] | 陈颖彪, 郑子豪, 吴志峰, 千庆兰. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展, 2019, 38(2): 205-223. |
[10] | 赵彦茜, 肖登攀, 柏会子, 陶福禄. 中国作物物候对气候变化的响应与适应研究进展[J]. 地理科学进展, 2019, 38(2): 224-235. |
[11] | 曹小曙, 胡培婷, 刘丹. 电动汽车充电站选址研究进展[J]. 地理科学进展, 2019, 38(1): 139-152. |
[12] | 徐银凤, 汪德根. 中国城市空间结构的高铁效应研究进展与展望[J]. 地理科学进展, 2018, 37(9): 1216-1230. |
[13] | 杨喜平, 方志祥. 移动定位大数据视角下的人群移动模式及城市空间结构研究进展[J]. 地理科学进展, 2018, 37(7): 880-889. |
[14] | 徐明, 石玉立, 王彬. 高分辨率青藏高原历史月降水数据重建[J]. 地理科学进展, 2018, 37(7): 923-932. |
[15] | 张洪源, 吴艳红, 刘衍君, 郭立男. 近20年青海湖水量变化遥感分析[J]. 地理科学进展, 2018, 37(6): 823-832. |
|