地理科学进展 ›› 2018, Vol. 37 ›› Issue (2): 198-213.doi: 10.18306/dlkxjz.2018.02.003
收稿日期:
2017-09-28
修回日期:
2018-01-30
出版日期:
2018-02-28
发布日期:
2018-02-28
作者简介:
作者简介:赵天杰(1985-),男,河南周口人,博士,副研究员,从事微波遥感土壤水分及其冻融态研究,E-mail:
基金资助:
Received:
2017-09-28
Revised:
2018-01-30
Online:
2018-02-28
Published:
2018-02-28
Supported by:
摘要:
土壤水分是陆—气交互作用的重要边界条件,在全球水循环和能量循环中扮演着关键角色,直接影响降水、径流、下渗与蒸散发等水文循环过程,并能反映洪涝和干旱的程度。随着第一颗采用被动微波干涉成像技术的SMOS(Soil Moisture and Ocean Salinity)卫星的发射成功,L波段被动微波遥感技术逐渐成为大尺度土壤水分监测的主要手段,促进了“射频干扰的检测与抑制”、“植被光学厚度反演与植被影响校正”以及“土壤粗糙度参数化方案”等关键问题的研究。本文梳理了“基于微波植被指数的L波段多角度数据反演土壤水分算法研究”项目的最新研究成果,同时评述了围绕以上关键技术问题所取得的国内外研究进展,并对土壤水分微波遥感的未来发展进行了展望。
赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018, 37(2): 198-213.
Tianjie ZHAO. Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects[J]. PROGRESS IN GEOGRAPHY, 2018, 37(2): 198-213.
表1
适用于L波段的土壤粗糙度参数化方案及其默认参数设置(受权引用自Peng et al, 2017)"
类别 | 名称 | 参数化方案 | 参数设置 | 文献 |
---|---|---|---|---|
基于试验数据 | C79 | Choudhury等(1979) | ||
W83 | Wang等(1983) | |||
W01 | Wigneron等(2001) | |||
W01sm | Wigneron等(2001) | |||
E07 | Escorihuela等(2007) | |||
E07sm | Escorihuela等(2007) | |||
W11 | Wigneron等(2011) | |||
SMOS | Kerr等(2012) | |||
W99 | Wegmuller等(1999) | |||
S06 | Schwank等(2006) | |||
L13 | Lawrence等(2013) | |||
G14 | Goodberlet等(2014) | |||
基于理论模型 | S02 | Shi等(2002) | ||
C10 | Chen等(2010) | |||
Z15 | Zhao, Shi et al. (2015b) |
[1] | 赵天杰. 2012. 被动微波遥感土壤水分[D]. 博士论文, 北京师范大学. |
[Zhao T J.2012. Passive microwave remote sensing of soil moisture[D]. Beijing: Beijing Normal University.] | |
[2] |
赵天杰, 张立新, 蒋玲梅, 等. 2009. 利用主被动微波数据联合反演土壤水分[J]. 地球科学进展, 24(7): 769-775.
doi: 10.3321/j.issn:1001-8166.2009.07.010 |
[Zhao T J, Zhang L X, Jiang L M, et al.2009. Joint inversion of soil moisture using active and passive microwave data[J]. Advances in Earth Science, 24(7): 769-775.]
doi: 10.3321/j.issn:1001-8166.2009.07.010 |
|
[3] |
Al Bitar A, Leroux D, Kerr Y H, et al.2012. Evaluation of SMOS soil moisture products over continental U.S. using the scan/SNOTEL network[J]. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1572-1586.
doi: 10.1109/TGRS.2012.2186581 |
[4] |
Bindlish R, Jackson T, Cosh M, et al.2015. Global soil moisture from the Aquarius/SAC-D satellite: Description and initial assessment[J]. IEEE Geoscience and Remote Sensing Letters, 12(5): 923-927.
doi: 10.1109/LGRS.2014.2364151 |
[5] | Bindlish R, Jackson T, Zhao T J.2011. A MODIS-based vegetation index climatology[C]//Proceedings of SPIE 8156, remote sensing and modeling of ecosystems for sustainability VIII. San Diego, CA: SPIE, 8156: 815603. |
[6] |
Chan S K, Bindlish R, O'Neill P E, et al.2016. Assessment of the SMAP passive soil moisture product[J]. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4994-5007.
doi: 10.1109/TGRS.2016.2561938 |
[7] |
Chen K S, Wu T-D, Tsang L, et al.2003. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 41(1): 90-101.
doi: 10.1109/TGRS.2002.807587 |
[8] |
Chen L, Shi J C, Wigneron J-P, et al.2010. A parameterized surface emission model at L-band for soil moisture retrieval[J]. IEEE Geoscience and Remote Sensing Letters, 7(1): 127-130.
doi: 10.1109/LGRS.2009.2028443 |
[9] |
Chen Y Y, Yang K, Qin J, et al.2017. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 122(11): 5780-5792.
doi: 10.1002/2016JD026388 |
[10] |
Choudhury B J, Schmugge T J, Chang A, et al.1979. Effect of surface roughness on the microwave emission from soils[J]. Journal of Geophysical Research: Oceans, 84(C9): 5699-5706.
doi: 10.1029/JC084iC09p05699 |
[11] |
Cosh M H, Jackson T J, Bindlish R, et al.2004. Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates[J]. Remote Sensing of Environment, 92(4): 427-435.
doi: 10.1016/j.rse.2004.02.016 |
[12] |
Cosh M H, Jackson T J, Starks P, et al.2006. Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation[J]. Journal of Hydrology, 323(1-4): 168-177.
doi: 10.1016/j.jhydrol.2005.08.020 |
[13] |
Crow W T, Koster R D, Reichle R H, et al.2005. Relevance of time-varying and time-invariant retrieval error sources on the utility of spaceborne soil moisture products[J]. Geophysical Research Letters, 32(24): L24405.
doi: 10.1029/2005GL024889 |
[14] |
Cui Q, Shi J C, Du J Y, et al.2015. An approach for monitoring global vegetation based on multiangular observations from SMOS[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2): 604-616.
doi: 10.1109/JSTARS.2015.2388698 |
[15] |
Dall'Amico J T, Schlenz F, Loew A, et al.2012. First results of SMOS soil moisture validation in the upper danube catchment[J]. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1507-1516.
doi: 10.1109/TGRS.2011.2171496 |
[16] |
Entekhabi D, Njoku E G, O'Neill P E, et al.2010. The soil moisture active passive (SMAP) mission[J]. Proceedings of the IEEE, 98(5): 704-716.
doi: 10.1109/JPROC.2010.2043918 |
[17] |
Escorihuela M J, Kerr Y H, De Rosnay P, et al.2007. A simple model of the bare soil microwave emission at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 1978-1987.
doi: 10.1109/TGRS.2007.894935 |
[18] |
Fernandez-Moran R, Al-Yaari A, Mialon A, et al.2017. SMOS-IC: An alternative SMOS soil moisture and vegetation optical depth product[J]. Remote Sensing, 9(5): 457.
doi: 10.3390/rs9050457 |
[19] | Fernandez-Moran R, Wigneron J-P, De Lannoy G, et al.2016. Calibrating the effective scattering albedo in the SMOS algorithm: Some first results[C]//Proceedings of 2016 IEEE international geoscience and remote sensing symposium. Beijing, China: IEEE, 826-829. |
[20] |
Goodberlet M A, Mead J B.2014. A model of surface roughness for use in passive remote sensing of bare soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5498-5505.
doi: 10.1109/TGRS.2013.2289979 |
[21] |
Houser P R, Shuttleworth W J, Famiglietti J S, et al.1998. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation[J]. Water Resources Research, 34(12): 3405-3420.
doi: 10.1029/1998WR900001 |
[22] | Imaoka K, Kachi M, Shibata A, et al.2007. Five years of AMSR-E monitoring and successive GCOM-W1/AMSR2 instrument[C]//Proceedings of SPIE 6744, sensors, systems, and next-generation satellites XI. Florence, Italy: SPIE, 6744: 67440J . |
[23] |
Jackson T J, Bindlish R, Cosh M H, et al.2012. Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the U.S[J]. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1530-1543.
doi: 10.1109/TGRS.2011.2168533 |
[24] |
Jackson T J, Cosh M H, Bindlish R, et al.2010. Validation of advanced microwave scanning radiometer soil moisture products[J]. IEEE Transactions on Geoscience and Remote Sensing, 48(12): 4256-4272.
doi: 10.1109/TGRS.2010.2051035 |
[25] |
Jackson T J, Le Vine D M, Hsu A Y, et al.1999. Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains hydrology experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2136-2151.
doi: 10.1109/36.789610 |
[26] |
Jackson T J, Schmugge T J.1991. Vegetation effects on the microwave emission of soils[J]. Remote Sensing of Environment, 36(3): 203-212.
doi: 10.1016/0034-4257(91)90057-D |
[27] |
Kerr Y H, Waldteufel P, Richaume P, et al.2012. The SMOS Soil Moisture Retrieval Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1384-1403.
doi: 10.1109/TGRS.2012.2184548 |
[28] |
Kerr Y H, Waldteufel P, Wigneron J-P, et al.2010. The SMOS mission: New tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 98(5): 666-687.
doi: 10.1109/JPROC.2010.2043032 |
[29] |
Konings A G, Piles M, Das N, et al.2017. L-band vegetation optical depth and effective scattering albedo estimation from SMAP[J]. Remote Sensing of Environment, 198(1): 460-470.
doi: 10.1016/j.rse.2017.06.037 |
[30] |
Konings A G, Piles M, Rötzer K, et al.2016. Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations[J]. Remote Sensing of Environment, 172: 178-189.
doi: 10.1016/j.rse.2015.11.009 |
[31] |
Kurum M.2013. Quantifying scattering albedo in microwave emission of vegetated terrain[J]. Remote Sensing of Environment, 129: 66-74.
doi: 10.1016/j.rse.2012.10.021 |
[32] |
Kurum M, Lang R H, O'Neill P E, et al.2011. A first-order radiative transfer model for microwave radiometry of forest canopies at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3167-3179.
doi: 10.1109/TGRS.2010.2091139 |
[33] |
Lawrence H, Wigneron J-P, Demontoux F, et al.2013. Evaluating the semiempirical H-Q model used to calculate the L-band emissivity of a rough bare soil[J]. IEEE Transactions on Geoscience and Remote Sensing, 51(7): 4075-4084.
doi: 10.1109/TGRS.2012.2226995 |
[34] |
Le Vine D M, Lagerloef G S E, Colomb F R, et al.2007. Aquarius: An instrument to monitor sea surface salinity from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 2040-2050.
doi: 10.1109/TGRS.2007.898092 |
[35] |
Li D Y, Zhao T J, Shi J C, et al.2015. First evaluation of Aquarius soil moisture products using in situ observations and GLDAS model simulations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(12): 5511-5525.
doi: 10.1109/JSTARS.2015.2452955 |
[36] |
Li L, Gaiser P W, Gao B C, et al.2010. WindSat global soil moisture retrieval and validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 48(5): 2224-2241.
doi: 10.1109/TGRS.2009.2037749 |
[37] |
Li L, Njoku E G, Im E, et al.2004. A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data[J]. IEEE Transactions on Geoscience and Remote Sensing, 42(2): 380-390.
doi: 10.1109/TGRS.2003.817195 |
[38] |
Mialon A, Wigneron J-P, De Rosnay P, et al.2012. Evaluating the L-MEB model from long-term microwave measurements over a rough field, SMOSREX 2006[J]. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1458-1467.
doi: 10.1109/TGRS.2011.2178421 |
[39] |
Mo T, Choudhury B J, Schmugge T J, et al.1982. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research: Oceans, 87(C13): 11229-11237.
doi: 10.1029/JC087iC13p11229 |
[40] |
Njoku E G, Ashcroft P, Chan T K, et al.2005. Global survey and statistics of radio-frequency interference in AMSR-E land observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 43(5): 938-947.
doi: 10.1109/TGRS.2004.837507 |
[41] |
Njoku E G, Chan S K.2006. Vegetation and surface roughness effects on AMSR-E land observations[J]. Remote Sensing of Environment, 100(2): 190-199.
doi: 10.1016/j.rse.2005.10.017 |
[42] |
Njoku E G, Jackson T J, Lakshmi V, et al.2003. Soil moisture retrieval from AMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 215-229.
doi: 10.1109/TGRS.2002.808243 |
[43] | O'Neill P, Chan S, Njoku E, et al.2016. Algorithm theoretical basis document level 2 & 3 soil moisture (passive) data products[R]. JPL D-66480. Pasadena, CA: Jet Propulsion Laboratory. |
[44] |
Pan M, Sahoo A K, Wood E F.2014. Improving soil moisture retrievals from a physically-based radiative transfer model[J]. Remote Sensing of Environment, 140: 130-140.
doi: 10.1016/j.rse.2013.08.020 |
[45] |
Parrens M, Al Bitar A, Mialon A, et al.2017. Estimation of the L-band effective scattering albedo of tropical forests using SMOS observations[J]. IEEE Geoscience and Remote Sensing Letters, 14(8): 1223-1227.
doi: 10.1109/LGRS.2017.2703637 |
[46] |
Parrens M, Wigneron J-P, Richaume P, et al.2016. Global-scale surface roughness effects at L-band as estimated from SMOS observations[J]. Remote Sensing of Environment, 181: 122-136.
doi: 10.1016/j.rse.2016.04.006 |
[47] |
Peng B, Zhao T J, Shi J C, et al.2017. Reappraisal of the roughness effect parameterization schemes for L-band radiometry over bare soil[J]. Remote Sensing of Environment, 199: 63-77.
doi: 10.1016/j.rse.2017.07.006 |
[48] |
Qin J, Yang K, Lu N, et al.2013. Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia[J]. Remote Sensing of Environment, 138: 1-9.
doi: 10.1016/j.rse.2013.07.003 |
[49] |
Saatchi S S, Harris M L, Brown S, et al.2011. Benchmark map of forest carbon stocks in tropical regions across three continents[J]. Proceedings of the National Academy of Sciences of the United States of America, 108(24): 9899-9904.
doi: 10.1073/pnas.1019576108 |
[50] |
Sánchez N, Martínez-Fernández J, González-Piqueras J, et al.2012. Water balance at plot scale for soil moisture estimation using vegetation parameters[J]. Agricultural and Forest Meteorology, 166-167: 1-9.
doi: 10.1016/j.agrformet.2012.07.005 |
[51] |
Schlenz F, Dall'Amico J T, Mauser W, et al.2012. Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany[J]. Hydrology and Earth System Sciences Discussions, 16(10): 3517-3533.
doi: 10.5194/hessd-9-5389-2012 |
[52] | Schwank M, Matzler C.2006. Air-to-soil transition model[M]//Mätzler C, Rosenkranz P W, Battaglia A, et al. Thermal microwave radiation: Applications for remote sensing. Stevenage, England: Institute of Engineering and Technology. |
[53] |
Schwank M, Volksch I, Wigneron J-P, et al.2010. Comparison of two bare-soil reflectivity models and validation with L-band radiometer measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 48(1): 325-337.
doi: 10.1109/TGRS.2009.2026894 |
[54] |
Shi J C, Chen K S, Li Q, et al.2002. A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(12): 2674-2686.
doi: 10.1109/TGRS.2002.807003 |
[55] | Shi J C, Dong X L, Zhao T J, et al.2014. WCOM: The science scenario and objectives of a global water cycle observation mission[C]//Proceedings of 2014 IEEE international geoscience and remote sensing symposium. Quebec City, QC, Canada: IEEE, 3646-3649. |
[56] |
Shi J C, Jackson T, Tao J, et al.2008. Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E[J]. Remote Sensing of Environment, 112(12): 4285-4300.
doi: 10.1016/j.rse.2008.07.015 |
[57] |
Shi J C, Yang D, Du J Y, et al.2012. Progresses on microwave remote sensing of land surface parameters[J]. Science China Earth Sciences, 55(7): 1052-1078.
doi: 10.1007/s11430-012-4444-x |
[58] |
Van Der Schalie R, Kerr Y H, Wigneron J P, et al.2016. Global SMOS soil moisture retrievals from the land parameter retrieval model[J]. International Journal of Applied Earth Observation and Geoinformation, 45(Pt B): 125-134.
doi: 10.1016/j.jag.2015.08.005 |
[59] |
Wang J R, Choudhury B J.1981. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency[J]. Journal of Geophysical Research: Oceans, 86(C6): 5277-5282.
doi: 10.1029/JC086iC06p05277 |
[60] |
Wang J R, O'Neill P E, Jackson T J, et al.1983. Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness[J]. IEEE Transactions on Geoscience and Remote Sensing, GE-21(1): 44-51.
doi: 10.1109/TGRS.1983.350529 |
[61] |
Wegmuller U, Matzler C.1999. Rough bare soil reflectivity model[J]. IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1391-1395.
doi: 10.1109/36.763303 |
[62] |
Wigneron J-P, Chanzy A, Kerr Y H, et al.2011. Evaluating an improved parameterization of the soil emission in L-MEB[J]. IEEE Transactions on Geoscience and Remote Sensing, 49(4): 1177-1189.
doi: 10.1109/TGRS.2013.2253972 |
[63] |
Wigneron J-P, Kerr Y, Waldteufel P, et al.2007. L-band microwave emission of the biosphere (L-MEB) model: Description and calibration against experimental data sets over crop fields[J]. Remote Sensing of Environment, 107(4): 639-655.
doi: 10.1016/j.rse.2006.10.014 |
[64] |
Wigneron J-P, Laguerre L, Kerr Y H.2001. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 39(8): 1697-1707.
doi: 10.1109/36.942548 |
[65] |
Wigneron J-P, Parde M, Waldteufel P, et al.2004. Characterizing the dependence of vegetation model parameters on crop structure, incidence angle, and polarization at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 42(2): 416-425.
doi: 10.1109/TGRS.2003.817976 |
[66] |
Yang H, Weng F Z, Lv L Q, et al.2011. The FengYun-3 microwave radiation imager on-orbit verification[J]. IEEE Transactions on Geoscience and Remote Sensing, 49(11): 4552-4560.
doi: 10.1109/TGRS.2011.2148200 |
[67] |
Zeng J Y, Li Z, Chen Q, et al.2015. Method for soil moisture and surface temperature estimation in the Tibetan Plateau using spaceborne radiometer observations[J]. IEEE Geoscience and Remote Sensing Letters, 12(1): 97-101.
doi: 10.1109/LGRS.2014.2326890 |
[68] |
Zhang Z J, Lan H M, Zhao T J.2017. Detection and mitigation of radiometers radio-frequency interference by using the local outlier factor[J]. Remote Sensing Letters, 8(4): 311-319.
doi: 10.1080/2150704X.2016.1266408 |
[69] | Zhao T J, Jackson T J, Bindlish R, et al.2012. Potential use of aquarius scatterometer observations to estimate vegetation water content[C]. Barc Poster Day. 2012 CDROM. |
[70] |
Zhao T J, Shi J C, Bindlish R, et al.2015a. Refinement of SMOS multiangular brightness temperature toward soil moisture retrieval and its analysis over reference targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2): 589-603.
doi: 10.1109/JSTARS.2014.2336664 |
[71] |
Zhao T J, Shi J C, Bindlish R, et al.2015b. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval[J]. Physics and Chemistry of the Earth, Parts A/B/C, 83-84: 65-74.
doi: 10.1109/URSIGASS.2014.6929685 |
[72] |
Zhao T J, Zhang L X, Shi J C, et al.2011. A physically based statistical methodology for surface soil moisture retrieval in the Tibet Plateau using microwave vegetation indices[J]. Journal of Geophysical Research: Atmospheres, 116(D8): D08116.
doi: 10.1029/2010JD015229 |
[1] | 姜勃, 田静, 苏红波. 基于CLM模型的月尺度中亚陆表蒸散和土壤水分模拟估算[J]. 地理科学进展, 2020, 39(3): 433-442. |
[2] | 吴泽棉, 邱建秀, 刘苏峡, 莫兴国. 基于土壤水分的农业干旱监测研究进展[J]. 地理科学进展, 2020, 39(10): 1758-1769. |
[3] | 胡健, 吕一河. 土壤水分动态随机模型研究进展[J]. 地理科学进展, 2015, 34(3): 389-400. |
[4] | 张显峰, 赵杰鹏, 刘羽. 一种改进的土壤水分微波遥感反演模型[J]. 地理科学进展, 2013, 32(1): 78-86. |
[5] | 贾媛媛,李召良. 被动微波遥感数据反演地表温度研究进展[J]. 地理科学进展, 2006, 25(3): 96-105. |
[6] | 张彩霞, 杨勤科, 李 锐. 基于DEM的地形湿度指数 及其应用研究进展[J]. 地理科学进展, 2005, 24(6): 116-123. |
[7] | 邵晓梅, 严昌荣, 徐振剑. 土壤水分监测与模拟研究进展[J]. 地理科学进展, 2004, 23(3): 58-66. |
[8] | 杨胜天, 刘昌明, 王鹏新. 黄河流域土壤水分遥感估算[J]. 地理科学进展, 2003, 22(5): 454-462. |
[9] | 高鹭, 陈素英, 胡春胜, 霍习良. 喷灌条件下农田土壤水分的空间变异性研究[J]. 地理科学进展, 2002, 21(6): 609-615. |
|