地理科学进展 ›› 2018, Vol. 37 ›› Issue (1): 152-162.doi: 10.18306/dlkxjz.2018.01.016
收稿日期:
2018-01-15
修回日期:
2018-01-23
出版日期:
2018-01-28
发布日期:
2018-01-28
作者简介:
作者简介:戴尔阜(1972-),男,甘肃平凉人,研究员,主要从事自然地理综合研究、气候变化及其区域响应、土地变化模拟研究,E-mail:
基金资助:
Erfu DAI1,2,3(), Liang MA1,2,3
Received:
2018-01-15
Revised:
2018-01-23
Online:
2018-01-28
Published:
2018-01-28
Supported by:
摘要:
土地系统变化长期以来不仅是地理学研究热点,也是资源环境经济学、生态学、城市规划等多学科领域关注的主题。构建模型模拟土地变化能够促进理解人地相互作用机制,模拟结果可为土地资源优化与资源环境政策制定提供依据。不同研究者基于不同学科理论、应用多种方法构建土地变化模型,模型从早期关注自然覆被类型变化发展到对人类决策行为的刻画,从统计方法发展到更突出空间分布的元胞自动机方法,以及更聚焦土地变化过程的经济学方法和多主体方法。未来土地变化模型发展方向为:在多尺度进行多方法耦合,对土地变化过程进行更为明晰地刻画,将土地变化模型与其他地球系统模型耦合等方面,进一步能够促进解释复杂人地系统,并推进模型在决策支持层面的应用。
戴尔阜, 马良. 土地变化模型方法综述[J]. 地理科学进展, 2018, 37(1): 152-162.
Erfu DAI, Liang MA. Review on land change modeling approaches[J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 152-162.
表1
土地变化模型分类及特征"
模型类别 | 特征 | 主要优势 | 主要限制 |
---|---|---|---|
机器学习和 统计模型 | 利用过去观察的土地覆被(利用)变化数据,建立土地变化与特定时空要素之间的参数或非参数关系 | ① 可用于对机理过程不明的情形; ② 能很好地结合遥感数据 | ① 因假设驱动力不变,仅能用于短期预测; ② 存在过拟合风险 |
元胞模型 | 整合考虑邻居作用的土地覆被(利用)适宜性地图和预期土地变化量来预测未来土地变化与空间格局 | ① 空间直观地刻画微观机制; ② 较好地代表邻居作用 | 对决策过程的刻画隐含于空间转换规则中 |
部门经济学 模型 | 采用局部或一般均衡结构模型,表达区域内按经济部门土地供给与需求 | ① 直观表示部门和区域间供给需求; ② 能较好刻画市场机制 | 对空间的表达不足 |
空间分解的 经济学模型 | 利用结构(或简化形式)的计量经济模型来确定影响土地系统空间均衡的因果关系 | ① 基于微观经济学理论中价格机制来刻画主体行为; ② 能在一定程度表达空间格局 | ① 对土地自然属性考虑不足; ② 大量既定经济学假设 |
多主体模型 | 模拟异质土地利用主体(主体之间,主体与环境间相互作用)的决策和行为 | ① 基于主体分类刻画主体决策过程; ② 主体学习和进化能表达决策路径依赖性 | ① 往往根据案例情况定义规则,只适用于特定区域和情形; ② 对空间的刻画有待加强 |
混合方法模型 | 将不同方法整合到一个模型或模拟框架中 | 综合不同方法优点,能突破单一方法的固有限制 | 模型复杂度增加导致率定和验证更为复杂 |
[1] | 摆万奇, 赵士洞. 1997. 土地利用和土地覆盖变化研究模型综述[J]. 自然资源学报, 12(2): 74-80. |
[Bai W Q, Zhao S D.1997. A comprehensive description of the models of Land use and land cover change study[J]. Journal of Natural Resources, 12(2): 74-80.] | |
[2] |
蔡玉梅, 刘彦随, 宇振荣, 等. 2004. 土地利用变化空间模拟的进展: CLUE-S模型及其应用[J]. 地理科学进展, 23(4): 63-71, 115.
doi: 10.3969/j.issn.1007-6301.2004.04.008 |
[Cai Y M, Liu Y S, YU Z R, et al.2004. Progress in spatial simulation of land use change: CLUE-S model and its application[J]. Progress in Geography,23(4): 63-71, 115.]
doi: 10.3969/j.issn.1007-6301.2004.04.008 |
|
[3] |
傅伯杰. 2014. 地理学综合研究的途径与方法: 格局与过程耦合[J]. 地理学报, 69(8):1052-1059.
doi: 10.11821/dlxb201408002 |
[Fu B J.2014. The integrated studies of geography: Coupling of patterns and processes[J]. Acta Geographica Sinica, 69(8): 1052-1059.]
doi: 10.11821/dlxb201408002 |
|
[4] |
傅伯杰, 冷疏影, 宋长青. 2015. 新时期地理学的特征与任务[J]. 地理科学, 35(8): 939-945.
doi: 10.1016/S0168-9002(97)00311-2 |
[Fu B J, Leng S Y, Song C Q.2015. The characteristics and tasks of geography in the new era[J]. Scientia Geographica Sinica, 35(8): 939-945.]
doi: 10.1016/S0168-9002(97)00311-2 |
|
[5] |
黄秋昊, 蔡运龙. 2005. 国内几种土地利用变化模型述评[J]. 中国土地科学, 19(5): 25-30.
doi: 10.3969/j.issn.1001-8158.2005.05.005 |
[Huang Q H, Cai Y L.2005. Review on several domestic land use change models[J]. China Land Science, 19(5): 25-30.]
doi: 10.3969/j.issn.1001-8158.2005.05.005 |
|
[6] | 柯新利, 邓祥征, 何书金. 2010. 地理元胞自动机模型的尺度敏感性及原因[J]. 地理研究, 29(5): 863-872. |
[Ke X L, Deng X Z, He S J.2010. Scale sensitivity and its causality for Geo-cellular Automata modelling[J]. Geographical Research, 29(5): 863-872.] | |
[7] |
黎夏, 叶嘉安, 刘小平. 2006. 地理模拟系统在城市规划中的应用[J]. 城市规划, 30(6): 69-74.
doi: 10.3321/j.issn:1002-1329.2006.06.015 |
[Li X, Yeh A G O, Liu X P.2006. Geographical simulation systems for urban planning[J]. City Planning Review, 30(6): 69-74.]
doi: 10.3321/j.issn:1002-1329.2006.06.015 |
|
[8] | 黎夏, 叶嘉安, 刘小平, 等. 2007. 地理模拟系统: 元胞自动机与多智能体[M]. 北京: 科学出版社. |
[Li X, Yeh A G O, Liu X P, et al. 2007. Geographical simulation systems: Cellular automata and multi-agent system[M]. Beijing: Science Press.] | |
[9] |
李明杰, 钱乐祥, 吴志峰, 等. 2010. 广州市海珠区高密度城区扩展SLEUTH模型模拟[J]. 地理学报, 65(10): 1163-1172.
doi: 10.3724/SP.J.1142.2010.40466 |
[Li M J, Qian L X, Wu Z F, et al.2010. The sleuth model simulation of high density urban sprawl in Haizhu district of Guangzhou city[J]. Acta Geographica Sinica, 65(10): 1163-1172.]
doi: 10.3724/SP.J.1142.2010.40466 |
|
[10] |
李少英, 刘小平, 黎夏, 等. 2017. 土地利用变化模拟模型及应用研究进展[J]. 遥感学报, 21(3): 329-340.
doi: 10.11834/jrs.20176159 |
[Li S Y, Liu X P, Li X, et al.2017. Simulation model of land use dynamics and application: Progress and prospects[J]. Journal of Remote Sensing, 21(3): 329-340.]
doi: 10.11834/jrs.20176159 |
|
[11] | 李月臣, 何春阳. 2008. 中国北方土地利用/覆盖变化的情景模拟与预测[J]. 科学通报, 53(6): 713-723. |
[Li Y C, He C Y.2008. Scenario simulation and prediction of land change and land cover in northern China[J]. Chinese Science Bulletin, 53(6): 713-723.] | |
[12] |
刘小平, 黎夏, 陈逸敏, 等. 2010. 基于多智能体的居住区位空间选择模型[J]. 地理学报, 65(6): 695-707.
doi: 10.11821/xb201006007 |
[Liu X P, Li X, Chen Y M, et al.2010. Agent-based model of residential location[J]. Acta Geographica Sinica, 65(6): 695-707.]
doi: 10.11821/xb201006007 |
|
[13] |
刘小平, 黎夏, 叶嘉安. 2006. 基于多智能体系统的空间决策行为及土地利用格局演变的模拟[J]. 中国科学: 地球科学, 36(11): 1027-1036.
doi: 10.3321/j.issn:1006-9267.2006.11.006 |
[Liu X P, Li X, Yeh A G O.2006. Spatial decision making behavior and land use pattern evolution based on multi-agent system[J]. Science in China: Earth Sciences, 36(11): 1027-1036.]
doi: 10.3321/j.issn:1006-9267.2006.11.006 |
|
[14] |
裴彬, 潘韬. 2010. 土地利用系统动态变化模拟研究进展[J]. 地理科学进展, 29(9): 1060-1066.
doi: 10.11820/dlkxjz.2010.09.006 |
[Pei B, Pan T.2010. Land use system dynamic modeling: Literature review and future research direction in China[J]. Progress in Geography, 29(9): 1060-1066.]
doi: 10.11820/dlkxjz.2010.09.006 |
|
[15] |
唐华俊, 吴文斌, 杨鹏, 等. 2009. 土地利用/土地覆被变化(LUCC)模型研究进展[J]. 地理学报, 64(4): 456-468.
doi: 10.3321/j.issn:0375-5444.2009.04.008 |
[Tang H J, Wu W B, Yang P, et al.2009. Recent progress of land use and land cover change (LUCC) model[J]. Acta Geographica Sinica, 64(4): 456-468.]
doi: 10.3321/j.issn:0375-5444.2009.04.008 |
|
[16] |
严冬, 李爱农, 南希, 等. 2016. 基于Dyna-CLUE改进模型和SD模型耦合的山区城镇用地情景模拟研究: 以岷江上游地区为例[J]. 地球信息科学学报, 18(4): 514-525.
doi: 10.3724/SP.J.1047.2016.00514 |
[Yan D, Li A N, Nan X, et al.2016. The Study of urban land scenario simulation in mountain area based on modified Dyna-CLUE model and SDM: A case study of the upper reaches of Minjiang river[J]. Journal of Geo-information Science, 18(4): 514-525.]
doi: 10.3724/SP.J.1047.2016.00514 |
|
[17] | 杨济达, 欧晓昆, 呙靖雯, 等. 2014. 基于CA-Markov和Geomod模型橡胶林变化预测比较[J]. 山地学报, 32(3): 267-276. |
[Yang J D, Ou X K, Guo J W, et al.2014. Comparison of CA-Markov and Geomod models for rubber plantation prediction[J]. Mountain Research, 32(3): 267-276.] | |
[18] |
余强毅, 吴文斌, 唐华俊, 等. 2014. 复杂系统理论与Agent模型在土地变化科学中的研究进展[J]. 地理学报, 66(11): 1518-1530.
doi: 10.11821/xb201111008 |
[Yu Q Y, Wu W B, Tang H J, et al.2014. Complex system theory and agent-based modeling: Progresses in land change science[J]. Acta Geographica Sinica, 66(11): 1518-1530.]
doi: 10.11821/xb201111008 |
|
[19] |
张明. 2001. 以土地利用/土地覆被变化为中心的土地科学研究进展[J]. 地理科学进展, 20(4): 297-304.
doi: 10.3969/j.issn.1007-6301.2001.04.001 |
[Zhang M.2001. The progress on comprehensive land sciences focused on land-use and land-cover change[J]. Progress in Geography, 20(4): 297-304.]
doi: 10.3969/j.issn.1007-6301.2001.04.001 |
|
[20] |
张永民, 赵士洞, Verburg P H.2003. CLUE-S模型及其在奈曼旗土地利用时空动态变化模拟中的应用[J]. 自然资源学报, 18(3): 310-318.
doi: 10.11849/zrzyxb.2003.03.008 |
[Zhang Y M, Zhao S D, Verburg P H.2003. CLUE-S and its application for simulating temporal and spatial change of land use in Naiman Banner[J]. Journal of Natural Resources, 18(3): 310-318.]
doi: 10.11849/zrzyxb.2003.03.008 |
|
[21] |
周成虎, 欧阳, 马廷, 等. 2009. 地理系统模拟的CA模型理论探讨[J]. 地理科学进展, 28(6): 833-838.
doi: 10.11820/dlkxjz.2009.06.001 |
[Zhou C H, Ou Y, Ma T, et al.2009. Theoretical perspectives of CA-based geographical system modeling[J]. Progress in Geography, 28(6): 833-838.]
doi: 10.11820/dlkxjz.2009.06.001 |
|
[22] | Adams D, Alig R, Mccarl B A, et al.2005. FASOMGHG conceptual structure, and specification: documentation[Z]. Unpublished paper. College Station, TX: Texas A&M University, Department of Agricultural Economics. |
[23] | Agarwal C, Green G M, Grove J M, et al.2002. A review and assessment of land-use change models: Dynamics of space, time and human choice[M]. Newton Square, PA: US Department of Agriculture, Forest Service, Northeastern Research Station. |
[24] | Alcamo J E, Leemans R E, Kreileman E E.1998. Global change scenarios of the 21st century: Results from the IMAGE 2.1 model[M].Oxford, UK: Elsevier Science. |
[25] |
An L.2012. Modeling human decisions in coupled human and natural systems: Review of agent-based models[J]. Ecological Modelling, 229: 25-36.
doi: 10.1016/j.ecolmodel.2011.07.010 |
[26] | Arthur W B.1988. Urban systems and historical path-dependence[M]. Ann Arbor, MI: The University of Michigan Press. |
[27] |
Baker W L.1989. A review of models of landscape change[J]. Landscape Ecology, 2(2): 111-133.
doi: 10.1007/BF00137155 |
[28] | Benenson I, Torrens P M.2006. Geosimulation: Automata-based modeling of urban phenomena[M]. Chichester, UK: John Wiley & Sons. |
[29] | Bert F, North M, Rovere S, et al.2015. Simulating agricultural land rental markets by combining agent-based models with traditional economics concepts: The case of the Argentine Pampas[J]. Environmental Modelling & Software, 71: 97-110. |
[30] |
Bockstael N E.1996. Modeling economics and ecology: The importance of a spatial perspective[J]. American Journal of Agricultural Economics, 78(5): 1168-1180.
doi: 10.2307/1243487 |
[31] |
Brady M, Kellermann K, Sahrbacher C, et al.2009. Impacts of decoupled agricultural support on farm structure, biodiversity and landscape mosaic: Some EU results[J]. Journal of Agricultural Economics, 60(3): 563-585.
doi: 10.1111/j.1477-9552.2009.00216.x |
[32] |
Brown D G, Robinson D T.2006. Effects of heterogeneity in residential preferences on an agent-based model of urban sprawl[J]. Ecology and Society, 11(1): 46.
doi: 10.1016/j.ecolecon.2005.06.002 |
[33] |
Brown D G, Verburg P H, Pontius R G, et al.2013. Opportunities to improve impact, integration, and evaluation of land change models[J]. Current Opinion in Environmental Sustainability, 5(5): 452-457.
doi: 10.1016/j.cosust.2013.07.012 |
[34] |
Burnham B O.1973. Markov Intertemporal Land Use Simulation Model[J]. Journal of Agricultural and Applied Economics, 5(1): 253-258.
doi: 10.1017/S0081305200011110 |
[35] |
Carlson K M, Curran L M, Ratnasari D, et al.2012. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia[J]. Proceedings of the National Academy of Sciences, 109(19): 7559-7564.
doi: 10.1073/pnas.1200452109 |
[36] |
Castella J C, Pheng Kam S, Dinh Quang D, et al.2007. Combining top-down and bottom-up modelling approaches of land use/cover change to support public policies: Application to sustainable management of natural resources in northern Vietnam[J]. Land Use Policy, 24(3): 531-545.
doi: 10.1016/j.landusepol.2005.09.009 |
[37] |
Castella J C, Verburg P H.2007. Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam[J]. Ecological Modelling, 202(3-4): 410-420.
doi: 10.1016/j.ecolmodel.2006.11.011 |
[38] | Casti J L.1997. Computing the uncomputable[J]. Complexity, 2(3): 7-12. |
[39] |
Chen X D, Lupi F, An L, et al.2012. Agent-based modeling of the effects of social norms on enrollment in payments for ecosystem services[J]. Ecological Modelling, 229: 16-24.
doi: 10.1016/j.ecolmodel.2011.06.007 pmid: 22389548 |
[40] |
Chen X D, Vina A, Shortridge A, et al.2014. Assessing the effectiveness of payments for ecosystem services: An agent-based modeling approach[J]. Ecology and Society, 19(1): 15.
doi: 10.5751/ES-05578-190107 |
[41] |
Clarke K C, Gaydos L J.1998. Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore[J]. International Journal of Geographical Information Science, 12(7): 699-714.
doi: 10.1080/136588198241617 pmid: 12294536 |
[42] | Eastman J.2007. The land change modeler, a software extension for ArcGIS[M]. Worcester, MA: Clark University. |
[43] |
Erb K H, Krausmann F, Lucht W, et al.2009. Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption[J]. Ecological Economics, 69(2): 328-334.
doi: 10.1016/j.ecolecon.2009.06.025 |
[44] |
Foley J A, Defries R, Asner G P, et al.2005. Global consequences of land Use[J]. Science, 309: 570-574.
doi: 10.1126/science.1111772 |
[45] |
Fujita M, Krugman P, Mori T.1999. On the evolution of hierarchical urban systems[J]. European Economic Review, 43(2): 209-251.
doi: 10.1016/S0014-2921(98)00066-X |
[46] | GLP.2005. Science plan and implementation strategy[R]. IGBP Report no. 53/IHDP Report no. 19. IGBP Stockholm. |
[47] | Hertel T W, Rose S, Tol R S J.2009. Land use in computable general equilibrium models: An overview[M]//Hertel T W, Rose S, Tol R S J. Economic analysis of land use in global climate change policy. London, UK: Routledge: 3-30. |
[48] |
Irwin E G, Geoghegan J.2001. Theory, data, methods: developing spatially explicit economic models of land use change[J]. Agriculture, Ecosystems & Environment, 85(1): 7-24.
doi: 10.1016/S0167-8809(01)00200-6 |
[49] |
Jakeman A J, Letcher R A, Norton J P.2006. Ten iterative steps in development and evaluation of environmental models[J]. Environmental Modelling & Software, 21(5): 602-614.
doi: 10.1016/j.envsoft.2006.01.004 |
[50] | Kaimowitz D, Angelsen A.1998. Economic models of tropical deforestation: a review[M]. Bogor, Indonesia: Cifor. |
[51] | Lambin E F, Geist H J.2005. Land-use and land-cover change: local processes and global impacts[M]. Berlin, Heidelberg, Germany: Springer. |
[52] |
Lewis D J.2010. An economic framework for forecasting land-use and ecosystem change[J]. Resource and Energy Economics, 32(2): 98-116.
doi: 10.1016/j.reseneeco.2009.11.007 |
[53] |
Lewis D J, Provencher B, Butsic V.2009. The dynamic effects of open-space conservation policies on residential development density[J]. Journal of Environmental Economics and Management, 57(3): 239-252.
doi: 10.1016/j.jeem.2008.11.001 |
[54] |
Liu X P, Li X, Yeh A G O.2006. Multi-agent systems for simulating spatial decision behaviors and land-use dynamics[J]. Science in China: Earth Sciences, 49(11): 1184-1194.
doi: 10.1007/s11430-006-1184-9 |
[55] |
Magliocca N R, Van Vliet J, Brown C, et al.2015. From meta-studies to modeling: Using synthesis knowledge to build broadly applicable process-based land change models[J]. Environmental Modelling & Software, 72: 10-20.
doi: 10.1016/j.envsoft.2015.06.009 |
[56] |
Mccarl B A, Schneider U A.2001. Greenhouse gas mitigation in U.S. agriculture and forestry[J]. Science, 294: 2481-2482.
doi: 10.1016/j.agsy.2006.08.001 pmid: 11752558 |
[57] |
Millington J D A, Perry G L W, Romero-Calcerrada R.2007. Regression techniques for examining land use/cover change: A case study of a mediterranean landscape[J]. Ecosystems, 10(4): 562-578.
doi: 10.1007/s10021-007-9020-4 |
[58] |
Mooney H A, Duraiappah A, Larigauderie A.2013. Evolution of natural and social science interactions in global change research programs[J]. Proceedings of the National Academy of Sciences, 110(S1): 3665-3672.
doi: 10.1073/pnas.1107484110 |
[59] |
Muller M R, Middleton J.1994. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada[J]. Landscape Ecology, 9(2): 151-157.
doi: 10.1007/BF00124382 |
[60] |
Nelson E, Mendoza G, Regetz J, et al.2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales[J]. Frontiers in Ecology and the Environment, 7(1): 4-11.
doi: 10.1890/080023 |
[61] | North M J, Macal C M.2007. Managing business complexity: Discovering strategic solutions with agent-based modeling and simulation[M]. Oxford, UK: Oxford University Press. |
[62] | NRC. 2014. Advancing land change modeling: Opportunities and research requirements[M]. Washiongton, DC: National Academies Press. |
[63] |
Overmars K P, Verburg P H, Veldkamp T.2007. Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model[J]. Land Use Policy, 24(3): 584-599.
doi: 10.1016/j.landusepol.2005.09.008 |
[64] |
Parker D C, Filatova T.2008. A conceptual design for a bilateral agent-based land market with heterogeneous economic agents[J]. Computers, Environment and Urban Systems, 32(6): 454-463.
doi: 10.1016/j.compenvurbsys.2008.09.012 |
[65] |
Parker D C, Manson S M, Janssen M A, et al.2003. Multi-agent systems for the simulation of land-use and land-cover change: A review[J]. Annals of the Association of American Geographers, 93(2): 314-337.
doi: 10.1111/1467-8306.9302004 |
[66] |
Pijanowski B C, Pithadia S, Shellito B A, et al.2005. Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States[J]. International Journal of Geographical Information Science, 19(2): 197-215.
doi: 10.1080/13658810410001713416 |
[67] |
Pontius R G, Cornell J D, Hall C a S.2001. Modeling the spatial pattern of land-use change with GEOMOD2: Application and validation for Costa Rica[J]. Agriculture, Ecosystems & Environment, 85(1): 191-203.
doi: 10.1016/S0167-8809(01)00183-9 |
[68] |
Robinson D T, Vittorio A D, Alexander P, et al.2017. Modelling feedbacks between human and natural processes in the land system[J]. Earth System Dynamics Discussions, 1-47.
doi: 10.5194/esd-2017-68 |
[69] | Rosegrant M W, Cai X, Cline S A.2002. World water and food to 2025: Dealing with scarcity[M]. Washington, DC: International Food Policy Research Institute. |
[70] |
Rounsevell M D A, Arneth A, Alexander P, et al.2014. Towards decision-based global land use models for improved understanding of the Earth system[J]. Earth System Dynamics, 5(1): 117.
doi: 10.5194/esd-5-117-2014 |
[71] |
Sands R D, Edmonds J A.2005. Climate change impacts for the conterminous USA: An integrated assessment[J]. Climatic Change, 69(1): 127-150.
doi: 10.1007/s10584-005-3616-5 |
[72] |
Sands R D, Leimbach M.2003. Modeling agriculture and land use in an integrated assessment framework[J]. Climatic Change, 56(1): 185-210.
doi: 10.1023/A:1021344614845 |
[73] |
Schaldach R, Alcamo J, Koch J, et al.2011. An integrated approach to modelling land-use change on continental and global scales[J]. Environmental Modelling & Software, 26(8): 1041-1051.
doi: 10.1016/j.envsoft.2011.02.013 |
[74] |
Schaldach R, Priess J A.2008. Integrated Models of the Land System: A review of modelling approaches on the regional to global scale[J]. Living Reviews in Landscape Research, 2: 1-34.
doi: 10.12942/lrlr-2008-1 |
[75] |
Schmit C, Rounsevell M D A.2006. Are agricultural land use patterns influenced by farmer imitation?[J]. Agriculture Ecosystems & Environment, 115(1-4): 113-127.
doi: 10.1016/j.agee.2005.12.019 |
[76] | Schrojenstein Lantman J, Verburg P H, Bregt A, et al.2011. Core principles and concepts in land-use modelling: A literature review[M]//Koomen E, Borsboom-van Beurden. Land-use modelling in planning practice. New York:Springer: 35-57 |
[77] |
Seto K C, Reenberg A, Boone C G, et al.2012. Urban land teleconnections and sustainability[J]. Proceedings of the National Academy of Sciences, 109(20): 7687-7692.
doi: 10.1073/pnas.1117622109 pmid: 22550174 |
[78] |
Shakhramanyan N G, Schneider U A, McCarl B A.2013. US agricultural sector analysis on pesticide externalities-the impact of climate change and a Pigovian tax[J]. Climatic Change, 117(4): 711-723.
doi: 10.1007/s10584-012-0585-3 |
[79] |
Shin J K, Fossett M.2008. Residential Segregation by Hill-Climbing Agents on the Potential Landscape[J]. Advances in Complex Systems, 11(6): 875-899.
doi: 10.1142/S021952590800191X |
[80] | Steffen W, Sanderson A, Tyson P D, et al.2005. Global change and the earth system: A planet under pressure[M]. Heidelberg, Germany: Springer. |
[81] |
Sun S, Parker D C, Huang Q, et al.2014. Market impacts on land-use change: An agent-based experiment[J]. Annals of the Association of American Geographers, 104(3): 460-484.
doi: 10.1080/00045608.2014.892338 |
[82] |
Tian Q, Holland J H, Brown D G.2016. Social and economic impacts of subsidy policies on rural development in the Poyang Lake Region, China: Insights from an agent-based model[J]. Agricultural Systems, 148: 12-27.
doi: 10.1016/j.agsy.2016.06.005 |
[83] |
Turner B L, Lambin E F, Reenberg A.2007. The emergence of land change science for global environmental change and sustainability[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(52): 20666-20671.
doi: 10.1073/pnas.0704119104 |
[84] |
Van Vliet J, Bregt A K, Brown D G, et al.2016. A review of current calibration and validation practices in land-change modeling[J]. Environmental Modelling & Software, 82: 174-182.
doi: 10.1016/j.envsoft.2016.04.017 |
[85] |
Verburg P H, Dearing J A, Dyke J G, et al.2016. Methods and approaches to modelling the Anthropocene[J]. Global Environmental Change, 39: 328-340.
doi: 10.1016/j.gloenvcha.2015.08.007 |
[86] |
Verburg P H, Overmars K P.2009. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model[J]. Landscape Ecology, 24(9): 1167.
doi: 10.1007/s10980-009-9355-7 |
[87] |
Verburg P H, Schot P P, Dijst M J, et al.2004. Land use change modelling: current practice and research priorities[J]. GeoJournal, 61(4): 309-324.
doi: 10.1007/s10708-004-4946-y |
[88] |
Verburg P H, Soepboer W, Veldkamp A, et al.2002. Modeling the spatial dynamics of regional land use: The CLUE-S model[J]. Environmental Management, 30(3): 391-405.
doi: 10.1007/s00267-002-2630-x pmid: 12148073 |
[89] |
Walsh R.2007. Endogenous open space amenities in a locational equilibrium[J]. Journal of Urban Economics, 61(2): 319-344.
doi: 10.1016/j.jue.2006.09.002 |
[90] |
Wong G Y, Alavalapati J R.2003. The land-use effects of a forest carbon policy in the US[J]. Forest Policy and Economics, 5(3): 249-263.
doi: 10.1016/S1389-9341(02)00061-8 |
[91] |
Würtenberger L, Koellner T, Binder C R.2006. Virtual land use and agricultural trade: Estimating environmental and socio-economic impacts[J]. Ecological Economics, 57(4): 679-697.
doi: 10.1016/j.ecolecon.2005.06.004 |
[92] |
Xu X, Du Z, Zhang H.2016. Integrating the system dynamic and cellular automata models to predict land use and land cover change[J]. International Journal of Applied Earth Observation and Geoinformation, 52: 568-579.
doi: 10.1016/j.jag.2016.07.022 |
[93] |
Zhang H, Zeng Y, Jin X, et al.2016. Simulating multi-objective land use optimization allocation using multi-agent system: A case study in Changsha, China[J]. Ecological Modelling, 320: 334-347.
doi: 10.1016/j.ecolmodel.2015.10.017 |
[1] | 马恩朴, 蔡建明, 韩燕, 廖柳文, 林静. 人地系统远程耦合的研究进展与展望[J]. 地理科学进展, 2020, 39(2): 310-326. |
[2] | 陈宝芬, 张耀民, 江东. 基于CA-ABM模型的福州城市用地扩张研究[J]. 地理科学进展, 2017, 36(5): 626-634. |
[3] | 王海军, 夏畅, 张安琪, 邓羽. 基于约束性CA的大都市郊区城镇增长的情景模拟与管控——以武汉市江夏区为例[J]. 地理科学进展, 2016, 35(7): 793-805. |
[4] | 顾朝林, 张悦, 翟炜, 管卫华, 李强, 赵娜, 刘晨. 城市与区域定量研究进展[J]. 地理科学进展, 2016, 35(12): 1433-1446. |
[5] | 陈凯, 刘凯, 柳林, 朱远辉. 基于随机森林的元胞自动机城市扩展模拟——以佛山市为例[J]. 地理科学进展, 2015, 34(8): 937-946. |
[6] | 刘翠玲, 龙瀛. 京津冀地区城镇空间扩张模拟与分析[J]. 地理科学进展, 2015, 34(2): 217-. |
[7] | 廖江福, 唐立娜, 王翠平, 许通. 城市元胞自动机扩展邻域效应的测量与校准研究[J]. 地理科学进展, 2014, 33(12): 1624-1633. |
[8] | 林晨, 周生路, 吴绍华. 基于优化GeoCA模型的土壤侵蚀时空变化模拟——以福建省长汀县为例[J]. 地理科学进展, 2012, 31(7): 911-920. |
[9] | 王成超, 杨玉盛. 基于农户生计策略的土地利用/覆被变化效应综述[J]. 地理科学进展, 2012, 31(6): 792-798. |
[10] | 黄云凤, 崔胜辉, 石龙宇. 半城市化地区生态系统服务对土地利用/覆被变化的响应——以厦门市集美区为例[J]. 地理科学进展, 2012, 31(5): 551-560. |
[11] | 吴健生, 冯喆, 高阳, 黄秀兰, 刘洪萌, 黄力. CLUE-S模型应用进展与改进研究[J]. 地理科学进展, 2012, (1): 3-10. |
[12] | 付超, 于贵瑞, 方华军, 王秋凤. 中国区域土地利用/覆被变化对陆地碳收支的影响[J]. 地理科学进展, 2012, (1): 88-96. |
[13] | 刘珍环, 李猷, 彭建, . 城市不透水表面的水环境效应研究进展[J]. 地理科学进展, 2011, 30(3): 275-281. |
[14] | 郭欢欢, 李波, 侯鹰, 孙特生. 元胞自动机和多主体模型在土地利用变化模拟中的应用[J]. 地理科学进展, 2011, 30(11): 1336-1344. |
[15] | 裴彬, 潘韬. 土地利用系统动态变化模拟研究进展[J]. 地理科学进展, 2010, 29(9): 1060-1066. |
|