地理科学进展 ›› 2018, Vol. 37 ›› Issue (1): 109-120.doi: 10.18306/dlkxjz.2018.01.012
彭书时1,*(), 朴世龙1, 于家烁1, 刘永稳1, 汪涛2, 朱高峰3, 董金玮4, 缪驰远5
收稿日期:
2017-12-21
修回日期:
2018-01-13
出版日期:
2018-01-28
发布日期:
2018-01-28
通讯作者:
彭书时
作者简介:
作者简介:彭书时(1986-),男,湖北武穴人,研究员,研究方向为全球变化与陆地生态系统,E-mail:
基金资助:
Shushi PENG1,*(), Shilong PIAO1, Jiashuo YU1, Yongwen LIU1, Tao WANG2, Gaofeng ZHU3, Jinwei DONG4, Chiyuan MIAO5
Received:
2017-12-21
Revised:
2018-01-13
Online:
2018-01-28
Published:
2018-01-28
Contact:
Shushi PENG
Supported by:
摘要:
地理系统是多圈层交互的复杂巨系统。地理系统模型是理解和预测不同尺度地理系统格局和过程变化最重要的研究方法。地理系统模型作为可持续发展科学决策必需的工具,是自然地理学重要的研究方向。过去几十年来,在全球变化等全球性重大环境问题和人类科学决策需求的推动下,地理系统模型虽然发展迅速,但还不足以准确地模拟和预测复杂人地耦合系统。本文分别从模型原理、框架和尺度等方面回顾与梳理了地理系统模型从单要素到多要素、从统计到过程、从静态到动态、从单点到区域和全球尺度模拟等发展历程,并总结了地理系统模型对发展人类—自然耦合系统以及模型—数据融合系统的趋势。发展中国的地理系统模型将有助于中国和全球可持续发展的科学决策。
彭书时, 朴世龙, 于家烁, 刘永稳, 汪涛, 朱高峰, 董金玮, 缪驰远. 地理系统模型研究进展[J]. 地理科学进展, 2018, 37(1): 109-120.
Shushi PENG, Shilong PIAO, Jiashuo YU, Yongwen LIU, Tao WANG, Gaofeng ZHU, Jinwei DONG, Chiyuan MIAO. A review of geographical system models[J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 109-120.
[32] |
Duan Q, Schaake J, Andréassian V, et al.2006. Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops[J]. Journal of Hydrology, 320(1-2): 3-17.
doi: 10.1016/j.jhydrol.2005.07.031 |
[33] |
Evensen G.2003. The Ensemble Kalman Filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics, 53(4): 343-367.
doi: 10.1007/s10236-003-0036-9 |
[34] |
Foley J A, Defries R, Asner G P, et al.2005. Global consequences of land use[J]. Science, 309: 570-574.
doi: 10.1126/science.1111772 |
[35] |
Foley J A, Prentice I C, Ramankutty N, et al.1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biogeochemical Cycles, 10(4): 603-628.
doi: 10.1029/96GB02692 |
[36] |
Foley J A, Ramankutty N, Brauman K A, et al.2011. Solutions for a cultivated planet[J]. Nature, 478: 337-342.
doi: 10.1038/nature10452 pmid: 21993620 |
[37] |
Fox A, Williams M, Richardson A D, et al.2009. The REFLEX project: Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data[J]. Agricultural and Forest Meteorology, 149(10): 1597-1615.
doi: 10.1016/j.agrformet.2009.05.002 |
[38] |
Frieler K, Lange S, Piontek F, et al.2017. Assessing the impacts of 1.5 °C global warming-simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)[J]. Geoscientific Model Development, 10(12): 4321-4345.
doi: 10.5194/gmd-2016-229 |
[39] |
Galloway J N, Schlesinger W H, Levy II H, et al.1995. Nitrogen fixation: Anthropogenic enhancement-environmental response[J]. Global Biogeochemical Cycles, 9(2): 235-252.
doi: 10.1029/95GB00158 |
[40] |
Gerten D, Schaphoff S, Haberlandt U, et al.2004. Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model[J]. Journal of Hydrology, 286(1-4): 249-270.
doi: 10.1016/j.jhydrol.2003.09.029 |
[41] |
Goll D S, Vuichard N, Maignan F, et al.2017. A representation of the phosphorus cycle for ORCHIDEE (revision 4520)[J]. Geoscientific Model Development, 10(10): 3745-3770.
doi: 10.5194/gmd-10-3745-2017 |
[1] |
蔡运龙. 2000. 自然地理学的创新视角[J]. 北京大学学报: 自然科学版, 36(4): 576-582.
doi: 10.3321/j.issn:0479-8023.2000.04.021 |
[Cai Y L.2000. Perspectives on innovation in physical geography[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 36(4): 576-582.]
doi: 10.3321/j.issn:0479-8023.2000.04.021 |
|
[42] | Grace J.2005. Role of forest biomes in the global carbon balance[M]//Griffiths H, Jarvis P G. The carbon balance of forest biomes. Abingdon, UK: Taylor and Francis Group: 19-48. |
[43] | Guimberteau M, Zhu D, Maignan F, et al.2017. ORCHIDEE-MICT (revision 4126), a land surface model for the high-latitudes: Model description and validation[J]. Geoscientific Model Development Discussions,doi: 10.5194/gmd-2017-122. (in Press) |
[2] | 车明亮, 陈报章, 王瑛, 等. 2014. 全球植被动力学模型研究综述[J]. 应用生态学报, 25(1): 263-271. |
[Che M L, Chen B Z, Wang Y, et al.2014. Review of dynamic global vegetation models (DGVMs)[J]. Chinese Journal of Applied Ecology, 25(1): 263-271.] | |
[3] | 陈报章. 2017. 陆地表层系统模型模拟与分析[M]. 北京: 科学出版社. |
[Chen B Z.2017. Ludi biaoceng xitong moni yu fenxi[M]. Beijing, China: Science Press.] | |
[44] |
Harris J A, Hobbs R J, Higgs E, et al.2006. Ecological restoration and global climate change[J]. Restoration Ecology, 14(2): 170-176.
doi: 10.1111/j.1526-100X.2006.00136.x |
[45] |
Henderson-Sellers A, Yang Z-L, Dickinson R E.1993. The project for intercomparison of land-surface parameterization schemes[J]. Bulletin of the American Meteorological Society, 74(7): 1335-1349.
doi: 10.1175/1520-0477(1995)0762.0.CO;2 |
[4] |
陈述彭. 1991. 地理系统与地理信息系统[J]. 地理学报, 46(1): 1-7.
doi: 10.11821/xb199101001 |
[Chen S P.1991. Geo-system and geo-information system[J]. Acta Geographica Sinica, 46(1): 1-7.]
doi: 10.11821/xb199101001 |
|
[46] |
Huntzinger D N, Schwalm C, Michalak A M, et al.2013. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project-Part 1: Overview and experimental design[J]. Geoscientific Model Development, 6(6): 2121-2133.
doi: 10.5194/gmdd-6-3977-2013 |
[47] |
Hurtt G C, Frolking S, Fearon M G, et al.2006. The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands[J]. Global Change Biology, 12(7): 1208-1229.
doi: 10.1111/j.1365-2486.2006.01150.x |
[48] |
Hurtt G C, Moorcroft P R, Pacala S W, et al.1998. Terrestrial models and global change: Challenges for the future[J]. Global Change Biology, 4(5): 581-590.
doi: 10.1046/j.1365-2486.1998.t01-1-00203.x |
[49] |
Jolly W M, Nemani R, Running S W.2005. A generalized, bioclimatic index to predict foliar phenology in response to climate[J]. Global Change Biology, 11(4): 619-632.
doi: 10.1111/j.1365-2486.2005.00930.x |
[5] | 方精云, 朱江玲, 王少鹏, 等. 2011. 全球变暖、碳排放及不确定性[J]. 中国科学: 地球科学, 41(10): 1385-1395. |
[Fang J Y, Zhu J L, Wang S P, et al.2011. Global warming, human-induced carbon emissions, and their uncertainties[J]. Science China Earth Sciences, 54(10): 1458-1468.] | |
[50] |
Kalman R E.1960. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 82(1): 35-45.
doi: 10.1115/1.3662552 |
[51] |
Krinner G, Viovy N, de Noblet-Ducoudré N, et al.2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system[J]. Global Biogeochemical Cycles, 19(1): GB1015.
doi: 10.1029/2003GB002199 |
[6] |
傅伯杰. 2017. 地理学: 从知识、科学到决策[J]. 地理学报, 72(11): 1923-1932.
doi: 10.11821/dlxb201711001 |
[Fu B J.2017. Geography: From knowledge, science to decision making support[J]. Acta Geographica Sinica, 72(11): 1923-1932.]
doi: 10.11821/dlxb201711001 |
|
[52] |
Lawrence D M, Oleson K W, Flanner M G, et al.2011. Parameterization improvements and functional and structural advances in version 4 of the community land model[J]. Journal of Advances in Modeling Earth Systems, 3(1): M03001.
doi: 10.1029/2011MS00045 |
[53] |
Lawrence P J, Chase T N.2007. Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0)[J]. Journal of Geophysical Research: Biogeosciences, 112(G1): G01023.
doi: 10.1029/2006JG000168 |
[7] |
胡和平, 汤秋鸿, 雷志栋, 等. 2004. 干旱区平原绿洲散耗型水文模型: I模型结构[J]. 水科学进展, 15(2): 140-145.
doi: 10.3321/j.issn:1001-6791.2004.02.002 |
[Hu H P, Tang Q H, Lei Z D, et al.2004. Runoff-evaporation hydrological model for arid plain oasis: 1, the model structure[J]. Advances in Water Science, 15(2): 140-145.]
doi: 10.3321/j.issn:1001-6791.2004.02.002 |
|
[54] |
Le Quéré C, Moriarty R, Andrew R M, et al.2015. Global carbon budget 2015[J]. Earth System Science Data, 7(2): 349-396.
doi: 10.5194/essd-7-349-2015 |
[55] |
Levis S, Bonan G B, Bonfils C.2004. Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model[J]. Climate Dynamics, 23(7-8): 791-802.
doi: 10.1007/s00382-004-0477-y |
[8] | 李新, 摆玉龙. 2010. 顺序数据同化的Bayes滤波框架[J]. 地球科学进展, 25(5): 515-522. |
[Li X, Bai Y L.2010. A Bayesian filter framework for sequential data assimilation[J]. Advances in Earth Science, 25(5): 515-522.] | |
[56] |
Li X, Koike T, Pathmathevan M.2004. A very fast simulated re-annealing (VFSA) approach for land data assimilation[J]. Computers & Geosciences, 30(3): 239-248.
doi: 10.1016/j.cageo.2003.11.002 |
[57] | Lieth H.1975. Modeling the primary productivity of the world[M]//Lieth H, Whittaker R H. Primary productivity of the biosphere. New York: Springer Verlag. |
[9] | 梁顺林, 李新, 谢先红, 等. 2013. 陆面观测、模拟与数据同化[M]. 北京: 高等教育出版社. |
[Liang S L, Li X, Xie X H, et al.2013. Land surface observation, modeling and data assimilation[M]. Beijing, China: Higher Education Press.] | |
[58] |
Lindeskog M, Arneth A, Bondeau A, et al.2013. Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa[J]. Earth System Dynamics, 4(2): 385-407.
doi: 10.5194/esd-4-385-2013 |
[59] |
Liu Y Q, Gupta H V.2007. Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework[J]. Water Resources Research, 43(7): W07401.
doi: 10.1029/2006WR005756 |
[10] | 毛留喜, 孙艳玲, 延晓冬. 2006. 陆地生态系统碳循环模型研究概述[J]. 应用生态学报, 17(11): 2189-2195. |
[Mao L X, Sun Y L, Yan X D.2006. Modeling of carbon cycling in terrestrial ecosystem: A review[J]. Chinese Journal of Applied Ecology, 17(11): 2189-2195.] | |
[60] | Liverman D, Rockström J, O’Brien K, et al.2013. Future earth initial design[R]. Paris, France: The Science and Technology Alliance for Global Sustainability. |
[61] |
Manabe S.1969. Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth's surface[J]. Monthly Weather Review, 97(11): 739-774.
doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2 |
[11] |
任立良. 2000. 流域数字水文模型研究[J]. 河海大学学报, 28(4): 1-7.
doi: 10.3321/j.issn:1000-1980.2000.04.001 |
[Ren L L.2000. A study on digital hydrological modeling[J]. Journal of Hohai University, 28(4): 1-7.]
doi: 10.3321/j.issn:1000-1980.2000.04.001 |
|
[62] |
McGuire A D, Sitch S, Clein J S, et al.2001. Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process-based ecosystem models[J]. Global Biogeochemical Cycles, 15(1): 183-206.
doi: 10.1029/2000GB001298 |
[63] |
McSweeney C F, Jones R G.2016. How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP[J]. Climate Services, 1: 24-29.
doi: 10.1016/j.cliser.2016.02.001 |
[12] |
汤秋鸿, 田富强, 胡和平. 2004. 干旱区平原绿洲散耗型水文模型: Ⅱ模型应用[J]. 水科学进展, 15(2): 146-150.
doi: 10.3321/j.issn:1001-6791.2004.02.003 |
[Tang Q H, Tian F Q, Hu H P.2004. Runoff-evaporation hydrological model for arid plain oasis: 2, applications of the model[J]. Advances in Water Science, 15(2): 146-150.]
doi: 10.3321/j.issn:1001-6791.2004.02.003 |
|
[64] | Millennium Ecosystem Assessment.2005. Ecosystems and human well-being: Current state and trends[M]. Washington, D.C.: Island Press. |
[65] |
Mohan S, Arumugam N.1995. Forecasting weekly reference crop evapotranspiration series[J]. Hydrological Sciences Journal, 40(6): 689-702.
doi: 10.1080/02626669509491459 |
[13] | 王文, 寇小华. 2009. 水文数据同化方法及遥感数据在水文数据同化中的应用进展[J]. 河海大学学报: 自然科学版, 37(5): 556-562. |
[Wang W, Kou X H.2009. Methods for hydrological data assimilation and advances of assimilating remotely sensed data into rainfall-runoff models[J]. Journal of Hohai University: Natural Sciences, 37(5): 556-562.] | |
[66] |
Moradkhani H, Sorooshian S, Gupta H V, et al.2005. Dual state-parameter estimation of hydrological models using ensemble Kalman filter[J]. Advances in Water Resources, 28(2): 135-147.
doi: 10.1016/j.advwatres.2004.09.002 |
[67] |
Morgan R P C, Quinton J N, Smith R E, et al.1998. The european soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms, 23(6): 527-544.
doi: 10.1002/(ISSN)1096-9837 |
[14] | 王旭峰, 马明国, 姚辉. 2009. 动态全球植被模型的研究进展[J]. 遥感技术与应用, 24(2): 246-251. |
[Wang X F, Ma M G, Yao H.2009. Advance in dynamic global vegetation models[J]. Remote Sensing Technology and Application, 24(2): 246-251.] | |
[68] |
Nagarajan K, Judge J, Graham W D, et al.2011. Particle Filter-based assimilation algorithms for improved estimation of root-zone soil moisture under dynamic vegetation conditions[J]. Advances in Water Resources, 34(4): 433-447.
doi: 10.1016/j.advwatres.2010.09.019 |
[69] |
Noh S J, Tachikawa Y, Shiiba M, et al.2011. Applying sequential Monte Carlo methods into a distributed hydrologic model: Lagged particle filtering approach with regularization[J]. Hydrology and Earth System Sciences, 15(10): 3237-3251.
doi: 10.5194/hessd-8-3383-2011 |
[15] |
王中根, 刘昌明, 吴险峰. 2003. 基于DEM的分布式水文模型研究综述[J]. 自然资源学报, 18(2): 168-173.
doi: 10.3321/j.issn:1000-3037.2003.02.007 |
[Wang Z G, Liu C M, Wu X F.2003. A review of the studies on distributed hydrological model based on DEM[J]. Journal of Natural Resources, 18(2): 168-173.]
doi: 10.3321/j.issn:1000-3037.2003.02.007 |
|
[70] |
Norros V, Laine M, Lignell R, et al.2017. Parameterization of aquatic ecosystem functioning and its natural variation: Hierarchical Bayesian modelling of plankton food web dynamics[J]. Journal of Marine Systems, 174: 40-53.
doi: 10.1016/j.jmarsys.2017.05.004 |
[71] |
Nyakatawa E Z, Reddy K C, Lemunyon J L.2001. Predicting soil erosion in conservation tillage cotton production systems using the revised universal soil loss equation (RUSLE)[J]. Soil and Tillage Research, 57(4): 213-224.
doi: 10.1016/S0167-1987(00)00178-1 |
[16] |
吴险峰, 刘昌明. 2002. 流域水文模型研究的若干进展[J]. 地理科学进展, 21(4): 341-348.
doi: 10.11820/dlkxjz.2002.04.007 |
[Wu X F, Liu C M.2002. Progress in watershed hydrological models[J]. Progress in Geography, 21(4): 341-348.]
doi: 10.11820/dlkxjz.2002.04.007 |
|
[72] | Oleson K W, Dai Y J, Bonan G, et al.2004. Technical description of the Community Land Model (CLM)[R]. NCAR Technical Note NCAR/TN-461+STR. Boulder, Colorado: National Center for Atmospheric Research. |
[73] | Oleson K W, Lawrence D M, Bonan G B, et al.2010. Technical description of version 4.0 of the Community Land Model (CLM)[R]. NCAR Technical Note NCAR/TN-478+STR. Boulder, Colorado: National Center for Atmospheric Research. |
[17] | 徐乾清. 2004. 中国水利百科全书: 水文与水资源分册[M]. 北京: 中国水利水电出版社. |
[Xu Q Q.2004. Zhongguo shuili baikequanshu: Shuiwen yu shuiziyuan fence[M]. Beijing, China: China Water & Power Press.] | |
[74] |
Piao S L, Sitch S, Ciais P, et al.2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends[J]. Global Change Biology, 19(7): 2117-2132.
doi: 10.1111/gcb.12187 pmid: 23504870 |
[75] |
Pokhrel P, Yilmaz K K, Gupta H V.2012. Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures[J]. Journal of Hydrology, 418-419: 49-60.
doi: 10.1016/j.jhydrol.2008.12.004 |
[18] |
张黎, 于贵瑞, Luo Y Q, 等. 2009. 基于模型数据融合的长白山阔叶红松林碳循环模拟[J]. 植物生态学报, 33(6): 1044-1055.
doi: 10.3773/j.issn.1005-264x.2009.06.004 |
[Zhang L, Yu G R, Luo Y Q, et al.2009. Carbon cycle modeling of a broad-leaved Korean pine forest in Changbai Mountain of China using the model-data fusion approach[J]. Chinese Journal of Plant Ecology, 33(6): 1044-1055.]
doi: 10.3773/j.issn.1005-264x.2009.06.004 |
|
[76] | Prentice I C, Bondeau A, Cramer W, et al.2007. Dynamic global vegetation modeling: Quantifying terrestrial ecosystem responses to large-scale environmental change[M]//Canadell J G, Pataki D E, Pitelka L F. Terrestrial ecosystems in a changing world. Berlin, Heidelberg, German: Springer: 175-192. |
[77] |
Prentice I C, Sykes M T, Cramer W.1991. The possible dynamic response of northern forests to global warming[J]. Global Ecology and Biogeography Letters, 1(5): 129-135.
doi: 10.2307/2997426 |
[19] | 中国科学院. 2016. 中国学科发展战略: 环境科学[M]. 北京: 科学出版社. |
[Chinese Academy of Sciences. 2016. Zhongguo xueke fazhan zhanlüe: Huanjing kexue[M]. Beijing, China: Science Press.] | |
[78] |
Rabin S S, Melton J R, Lasslop G, et al.2017. The Fire Modeling Intercomparison Project (FireMIP), phase 1: Experimental and analytical protocols with detailed model descriptions[J]. Geoscientific Model Development, 10(3): 1175-1197.
doi: 10.5194/gmd-10-1175-2017 |
[79] |
Raczka B M, Davis K J, Huntzinger D, et al.2013. Evaluation of continental carbon cycle simulations with North American flux tower observations[J]. Ecological Monographs, 83(4): 531-556.
doi: 10.1890/12-0893.1 |
[20] |
周成虎, 欧阳, 马廷, 等. 2009. 地理系统模拟的CA模型理论探讨[J]. 地理科学进展, 28(6): 833-838.
doi: 10.11820/dlkxjz.2009.06.001 |
[Zhou C H, Ou Y, Ma T, et al.2009. Theoretical perspectives of CA-based geographical system modeling[J]. Progress in Geography, 28(6): 833-838.]
doi: 10.11820/dlkxjz.2009.06.001 |
|
[21] |
Arnold J G, Moriasi D N, Gassman P W, et al.2012. SWAT: Model use, calibration, and validation[J]. Transactions of the ASABE, 55(4): 1491-1508.
doi: 10.13031/2013.42256 |
[22] | Bonan G.2016. Ecological climatology: Concept and applications[M]. New York: Cambrige University Press. |
[23] | Carson D, Sangster A.1981. The influence of land-surface albedo and soil moisture on general circulation model simulation'[M]//Rutherford I D. Research activities in atmospheric and oceanic modeling. Numerical Experimentation Program Report No. 2. |
[24] |
Clark D B, Mercado L M, Sitch S, et al.2011. The Joint UK Land Environment Simulator (JULES), model description-Part 2: Carbon fluxes and vegetation dynamics[J]. Geoscientific Model Development, 4(3): 701-722.
doi: 10.5194/gmd-4-701-2011 |
[80] | Renard K G, Foster G R, Weesies G A, et al.1997. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE)[M]. Washington, D.C.: U.S. Department of Agriculture. |
[81] |
Richardson A D, Williams M, Hollinger D Y, et al.2010. Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints[J]. Oecologia, 164(1): 25-40.
doi: 10.1007/s00442-010-1628-y |
[25] |
Clark J S, Gelfand A E.2006a. A future for models and data in environmental science[J]. Trends in Ecology & Evolution, 21(7): 375-380.
doi: 10.1016/j.tree.2006.03.016 pmid: 16815437 |
[26] | Clark J S, Gelfand A E.2006b. Hierarchical modelling for the environmental sciences: Statistical methods and applications[M]. New York: Oxford University Press. |
[82] | Ricke K L, Moreno-Cruz J B, Schewe J, et al.2015. Policy thresholds in mitigation[J]. Nature Geoscience, 9(1): 5-6. |
[83] | Rosegrant M W, The IMPACT Development Team.2012. International model for policy analysis of agricultural commodities and trade (IMPACT): Model description[R]. Washington, D.C.: International Food Policy Research Institute. |
[27] |
Clark J S, LaDeau S, Ibanez I.2004. Fecundity of trees and the colonization-competition hypothesis[J]. Ecological Monographs, 74(3): 415-442.
doi: 10.1890/02-4093 |
[28] |
Clark M P, Kavetski D, Fenicia F.2011. Pursuing the method of multiple working hypotheses for hydrological modeling[J]. Water Resources Research, 47(9): W09301.
doi: 10.1029/2010WR009827 |
[84] |
Schmidhuber J, Tubiello F N.2007. Global food security under climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(50): 19703-19708.
doi: 10.1073/pnas.0701976104 |
[85] |
Scholze M, Kaminski T, Rayner P, et al.2007. Propagating uncertainty through prognostic carbon cycle data assimilation system simulations[J]. Journal of Geophysical Research: Atmospheres, 112(D17): D17305.
doi: 10.1029/2007JD008642 |
[29] |
Cramer W, Bondeau A, Woodward F I, et al.2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models[J]. Global Change Biology, 7(4): 357-373.
doi: 10.1046/j.1365-2486.2001.00383.x |
[30] | Cressie N, Wikle C K.2011. Statistics for spatio-temporal data[M]. Hoboken, New Jersey: John Wiley & Sons. |
[86] | Singh V P.1995. Computer models of watershed hydrology[M]. Littleton, CO: Water Resources Publications. |
[87] |
Sitch S, Friedlingstein P, Gruber N, et al.2015. Recent trends and drivers of regional sources and sinks of carbon dioxide[J]. Biogeosciences, 12(3): 653-679.
doi: 10.5194/bg-12-653-2015 |
[88] |
Sitch S, Smith B, Prentice I C, et al.2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 9(2): 161-185.
doi: 10.1046/j.1365-2486.2003.00569.x |
[89] |
Smil V.1999. Nitrogen in crop production: An account of global flows[J]. Global Biogeochemical Cycles, 13(2): 647-662.
doi: 10.1029/1999GB900015 |
[90] | Stehfest E, van Vuuren D, Bouwman L, et al.2014. Integrated assessment of global environmental change with IMAGE 3.0: Model description and policy applications[M]. The Hague, The Netherlands: Netherlands Environmental Assessment Agency. |
[91] |
Stocker B D, Strassmann K, Joos F.2011. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: Analyses with a process-based model[J]. Biogeosciences, 8(1): 69-88.
doi: 10.5194/bg-8-69-2011 |
[92] | Stocker T F, Qin D, Plattner G-K, et al.2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge, UK: Cambridge University Press. |
[93] |
Stöckli R, Rutishauser T, Dragoni D, et al.2008. Remote sensing data assimilation for a prognostic phenology model[J]. Journal of Geophysical Research: Biogeosciences, 113(G4): G04021.
doi: 10.1029/2008JG000781 |
[94] |
Trudinger C M, Raupach M R, Rayner P J, et al.2007. OptIC project: An intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models[J]. Journal of Geophysical Research: Biogeosciences, 112(G2): G02027.
doi: 10.1029/2006JG000367 |
[95] | van Vuuren D, Kok M, van der Esch S.2012. Roads from Rio+20: Pathways to achieve global sustainability goals by 2050[R]. The Hague, The Netherlands: Netherlands Environmental Assessment Agency. |
[96] |
Veldkamp T I E, Wada Y, Aerts J C J H, et al.2017. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century[J]. Nature Communications, 8: 15697.
doi: 10.1038/ncomms15697 pmid: 28643784 |
[97] |
Vrugt J A, Diks C G H, Gupta H V, et al.2005. Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation[J]. Water Resources Research, 41(1): W01017.
doi: 10.1029/2004WR003059 |
[31] | de Vries H J M, van Vuuren D P, den Elzen M G J, et al.2001. The timer image energy regional (Timer) model[M]. Bilthoven, The Netherlands: National Institute for Public Health and the Environment (RIVM). |
[98] |
Vrugt J A, Sadegh M.2013. Toward diagnostic model calibration and evaluation: Approximate Bayesian computation[J]. Water Resources Research, 49(7): 4335-4345.
doi: 10.1002/wrcr.20354 |
[99] |
Warszawski L, Frieler K, Huber V, et al.2014. The inter-sectoral impact model intercomparison project (ISI-MIP): Project framework[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3228-3232.
doi: 10.1073/pnas.1312330110 |
[100] |
Wikle C K.2003. Hierarchical bayesian models for predicting the spread of ecological processes[J]. Ecology, 84(6): 1382-1394.
doi: 10.1890/0012-9658(2003)084[1382:HBMFPT]2.0.CO;2 |
[101] |
Williams M, Richardson A D, Reichstein M, et al.2009. Improving land surface models with FLUXNET data[J]. Biogeosciences, 6(7): 1341-1359.
doi: 10.5194/bg-6-1295-2009 |
[102] |
Williams M, Schwarz P, Law B, et al.2005. An improved analysis of forest carbon dynamics using data assimilation[J]. Global Change Biology, 11: 89-105.
doi: 10.1111/j.1365-2486.2004.00891.x |
[103] | Wischmeier W H, Smith D D.1978. Predicting rainfall erosion losses: A Guide to Conservation Planning. Agriculture Handbook No. 537[M]. Washington, DC: U.S. Department of Agriculture. |
[104] | Woltjer G, Bezlepkina I, van Leeuwen M, et al.2011. The agricultural world in equations: An overview of the main models used at LEI[M]. The Hague, The Netherlands: Project Manager Sustainability Measurement. |
[105] |
Zaehle S, Friend A D.2010. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates[J]. Global Biogeochemical Cycles, 24(1): GB1005.
doi: 10.1029/2009GB003521 |
[106] |
Zeng X D, Li F, Song X.2014. Development of the IAP dynamic global vegetation model[J]. Advances in Atmospheric Sciences, 31(3): 505-514.
doi: 10.1007/s00376-013-3155-3 |
[107] |
Zeng Z Z, Piao S L, Li L Z X, et al.2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades[J]. Nature Climate Change, 7(6): 432-436.
doi: 10.1038/nclimate3299 |
[108] |
Zhao M S, Running S W.2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 329: 940-943.
doi: 10.1126/science.1192666 pmid: 20724633 |
[109] |
Zhu D, Peng S S, Ciais P, et al.2015. Improving the dynamics of northern hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model[J]. Geoscientific Model Development, 8(7): 2263-2283.
doi: 10.5194/gmd-8-2263-2015 |
[110] |
Zhu G F, Li X, Su Y H, et al.2014. Simultaneously assimilating multivariate data sets into the two-source evapotranspiration model by Bayesian approach: Application to spring maize in an arid region of northwestern China[J]. Geoscientific Model Development, 7(4): 1467-1482.
doi: 10.5194/gmd-7-1467-2014 |
[111] |
Zhu Z C, Piao S L, Myneni R B, et al.2016. Greening of the earth and its drivers[J]. Nature Climate Change, 6(8): 791-795.
doi: 10.1038/nclimate3004 |
[1] | 陈睿山, 赵志强, 徐迪, 陈轶. 城市和城市群可持续发展指数研究进展[J]. 地理科学进展, 2021, 40(1): 61-72. |
[2] | 吴健生, 李铠杨, 赵宇豪. 基于改进三维足迹模型的关中地区土地自然资本利用状况分析[J]. 地理科学进展, 2020, 39(8): 1345-1355. |
[3] | 李玉恒, 宋传垚, 阎佳玉, 黄惠倩. 深度贫困地区乡村地域系统演化研究——以河北省阳原县为例[J]. 地理科学进展, 2020, 39(6): 951-959. |
[4] | 马明国,汤旭光,韩旭军,时伟宇,宋立生,黄静. 西南岩溶地区碳循环观测与模拟研究进展和展望[J]. 地理科学进展, 2019, 38(8): 1196-1205. |
[5] | 张军泽, 王帅, 赵文武, 刘焱序, 傅伯杰. 地球界限概念框架及其研究进展[J]. 地理科学进展, 2019, 38(4): 465-476. |
[6] | 王成, 李颢颖, 何焱洲, 马小苏, 周明茗. 重庆直辖以来乡村人居环境可持续发展力及其时空分异研究[J]. 地理科学进展, 2019, 38(4): 556-566. |
[7] | 汤青, 李扬, 陈明星, 徐勇. 半城镇化农民可持续生计与农村可持续发展——理论框架、研究进展及未来展望[J]. 地理科学进展, 2018, 37(8): 1022-1030. |
[8] | 李玉恒, 阎佳玉, 武文豪, 刘彦随. 世界乡村转型历程与可持续发展展望[J]. 地理科学进展, 2018, 37(5): 627-635. |
[9] | 吕一河, 傅微, 李婷, 刘源鑫. 区域资源环境综合承载力研究进展与展望[J]. 地理科学进展, 2018, 37(1): 130-136. |
[10] | 刘焱序, 杨思琪, 赵文武, 傅伯杰. 变化背景下的当代中国自然地理学——2017全国自然地理学大会述评[J]. 地理科学进展, 2018, 37(1): 163-171. |
[11] | 赵明伟, 岳天祥. 高精度曲面建模方法研究进展与分类[J]. 地理科学进展, 2016, 35(4): 401-408. |
[12] | 曹阳, 甄峰. 基于智慧城市的可持续城市空间发展模型总体架构[J]. 地理科学进展, 2015, 34(4): 430-437. |
[13] | 黄洵, 黄民生. 基于能值分析的城市可持续发展水平与经济增长关系研究——以泉州市为例[J]. 地理科学进展, 2015, 34(1): 38-47. |
[14] | 郭永锐, 张捷. 社区恢复力研究进展及其地理学研究议题[J]. 地理科学进展, 2015, 34(1): 100-109. |
[15] | 樊杰, 蒋子龙. 面向“未来地球”计划的区域可持续发展系统解决方案研究——对人文—经济地理学发展导向的讨论[J]. 地理科学进展, 2015, 34(1): 1-9. |
|