地理科学进展 ›› 2018, Vol. 37 ›› Issue (1): 93-101.doi: 10.18306/dlkxjz.2018.01.010
黄永梅1(), 陈慧颖1, 张景慧2, 盛芝露1, 李恩贵1, 刘鸿雁3,*(
)
收稿日期:
2018-01-17
修回日期:
2018-01-25
出版日期:
2018-01-28
发布日期:
2018-01-28
通讯作者:
刘鸿雁
作者简介:
作者简介:黄永梅(1974-),女,内蒙古宁城人,博士,教授,主要从事植物地理学和生态水文学研究,E-mail:
基金资助:
Yongmei HUANG1(), Huiying CHEN1, Jinghui ZHANG2, Zhilu SHENG1, En'gui LI1, Hongyan LIU3,*(
)
Received:
2018-01-17
Revised:
2018-01-25
Online:
2018-01-28
Published:
2018-01-28
Contact:
Hongyan LIU
Supported by:
摘要:
植物属性地理学是植物地理学的一个新兴研究方向,研究植物属性的地理分布规律。目前与植物属性地理相关的研究热点主要集中在植物属性的多尺度表达、植物属性的权衡关系和属性多样性与生态系统功能三个方面。比叶面积、叶干物质含量、叶氮含量、种子质量、植物高度、茎密度是最受关注的植物属性。植物属性需要在植物个体水平上进行测量,然后基于群落内物种相对优势度的加权平均上推到群落水平。植物属性权衡关系主要包括叶片经济型谱及属性与环境因子之间的权衡关系研究。全球植物属性数据库的丰富与共享,推动着植物属性地理学的蓬勃发展。当前的植物属性空间连续分布主要利用全球属性数据库和空间统计建模方法实现,但借助激光扫描和成像光谱技术直接对区域植物功能属性进行空间制图正成为植物属性地理学空间计算的新方法。植物属性的空间格局分析是植物属性地理学的重要内容之一,不仅有助于解释植物物种的适应性与分布、群落构建等问题,而且为预测全球气候变化对植物的影响提供了依据。用植物属性代替物种可以更好地解释植物分布和植物对环境适应的生理机制,所以在全球植被模型研究中开始尝试将基于物种的植被动态模型发展为基于属性的植被动态模型,这将会给全球变化下碳循环过程的模拟和陆面模式带来新的机遇和挑战。展望未来,植物属性地理学仍然需要发展新的研究手段,深化全球植物属性的空间分异规律及其与环境因子之间的关系研究,以及完善全球和区域植物属性数据库建设。
黄永梅, 陈慧颖, 张景慧, 盛芝露, 李恩贵, 刘鸿雁. 植物属性地理的研究进展与展望[J]. 地理科学进展, 2018, 37(1): 93-101.
Yongmei HUANG, Huiying CHEN, Jinghui ZHANG, Zhilu SHENG, En'gui LI, Hongyan LIU. Advances and prospects of plant trait biogeography[J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 93-101.
[1] | 冯秋红, 史作民, 董莉莉. 2008. 植物功能性状对环境的响应及其应用[J]. 林业科学, 44(4): 125-131. |
[Feng Q H, Shi Z M, Dong L L.2008. Response of plant functional traits to environment and its application[J]. Scientia Silvae Sinicae, 44(4): 125-131.] | |
[2] |
李金花, 李镇清, 王刚. 2003. 不同放牧强度对冷蒿和星毛委陵菜养分含量的影响[J]. 草业学报, 12(6): 30-35.
doi: 10.3321/j.issn:1004-5759.2003.06.005 |
[Li J H, Li Z Q, Wang G.2003. Effect of different grazing intensities on the nutrient contents of Artemisia frigida and Potentilla acaulis[J]. Acta Prataculturae Sinica, 12(6): 30-35.]
doi: 10.3321/j.issn:1004-5759.2003.06.005 |
|
[3] | 刘晓娟, 马克平. 2015. 植物功能性状研究进展[J]. 中国科学: 生命科学, 45(4): 325-339. |
[Liu X J, Ma K P.2015. Plant functional traits-concepts, applications and future directions[J]. Scientia Sinica Vitae, 45(4): 325-339.] | |
[4] | 孟婷婷, 倪健, 王国宏. 2007. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 31(1): 150-165. |
[Meng T T, Ni J, Wang G H.2007. Plant functional traits, environments and ecosystem functioning[J]. Journal of Plant Ecology, 31(1): 150-165.] | |
[5] |
任书杰, 曹明奎, 陶波, 等. 2006. 陆地生态系统氮状态对碳循环的限制作用研究进展[J]. 地理科学进展, 25(4): 58-67.
doi: 10.3969/j.issn.1007-6301.2006.04.007 |
[Ren S J, Cao M K, Tao B, et al.2006. The effects of nitrogen limitation on terrestrial ecosystem carbon cycle: A review[J]. Progress in Geography, 25(4): 58-67.]
doi: 10.3969/j.issn.1007-6301.2006.04.007 |
|
[6] |
王炜, 梁存柱, 刘钟龄, 等. 2000. 草原群落退化与恢复演替中的植物个体行为分析[J]. 植物生态学报, 24(3): 268-274.
doi: 10.1088/0256-307X/17/9/008 |
[Wang W, Liang C Z, Liu Z L, et al.2000. Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community[J]. Acta Phytoecologica Sinica, 24(3): 268-274.]
doi: 10.1088/0256-307X/17/9/008 |
|
[7] | 武吉华, 张绅, 江源, 等. 2004. 植物地理学[M]. 4版. 北京: 高等教育出版社. |
[Wu J H, Zhang S, Jiang Y, et al.2004. Zhiwu dilixue[M]. Beijing, China: Higher Education Press.] | |
[8] |
Adler P, Raff D, Lauenroth W.2001. The effect of grazing on the spatial heterogeneity of vegetation[J]. Oecologia, 128(4): 465-479.
doi: 10.1007/s004420100737 pmid: 28547391 |
[9] |
Adler P B, Milchunas D G, Lauenroth W K, et al.2004. Functional traits of graminoids in semi-arid steppes: A test of grazing histories[J]. Journal of Applied Ecology, 41(4): 653-663.
doi: 10.1111/j.0021-8901.2004.00934.x |
[10] |
Ali A, Yan E-R, Chang S X, et al.2017. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests[J]. Science of the Total Environment, 574: 654-662.
doi: 10.1016/j.scitotenv.2016.09.022 pmid: 27657991 |
[11] |
Bai Y, Han X, Wu J, et al.2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature, 431(7005): 181-184.
doi: 10.1038/nature02850 pmid: 202020202020202020202020 |
[12] |
Butler E E, Datta A, Flores-Moreno H, et al.2017. Mapping local and global variability in plant trait distributions[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(51): E10937-E10946.
doi: 10.1073/pnas.1708984114 pmid: 29196525 |
[13] |
Cardinale B J, Srivastava D S, Duffy J E, et al.2006. Effects of biodiversity on the functioning of trophic groups and ecosystems[J]. Nature, 443: 989-992.
doi: 10.1038/nature05202 pmid: 17066035 |
[14] |
Chapin III F S, Zavaleta E S, Eviner V T, et al.2000. Consequences of changing biodiversity[J]. Nature, 405: 234-242.
doi: 10.1038/35012241 |
[15] |
Cingolani A M, Posse G, Collantes M B.2005. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands[J]. Journal of Applied Ecology, 42(42): 50-59.
doi: 10.1111/j.1365-2664.2004.00978.x |
[16] |
Cornelissen J H C, Diez P C, Hunt R.1996. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types[J]. Journal of Ecology, 84(5): 755-765.
doi: 10.2307/2261337 |
[17] |
Cornelissen J H C, Lavorel S, Garnier E, et al.2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 51(4): 335-380.
doi: 10.1080/14786430802620724 |
[18] |
Cruz P, De Quadros F L F, Theau J P, et al.2010. Leaf traits as functional descriptors of the intensity of continuous grazing in native grasslands in the south of brazil[J]. Rangeland Ecology & Management, 63(3): 350-358.
doi: 10.2111/08-016.1 |
[19] |
Díaz S, Cabido M.2001. Vive la différence: Plant functional diversity matters to ecosystem processes[J]. Trends in Ecology & Evolution, 16(11): 646-655.
doi: 10.1017/S0007114508971324 |
[20] |
Díaz S, Hodgson J G, Thompson K, et al.2004. The plant traits that drive ecosystems: Evidence from three continents[J]. Journal of Vegetation Science, 15(3): 295-304.
doi: 10.1111/j.1654-1103.2004.tb02266.x |
[21] |
Díaz S, Kattge J, Cornelissen J H C, et al.2016. The global spectrum of plant form and function[J]. Nature, 529: 167-171.
doi: 10.1038/nature16489 pmid: 26700811 |
[22] |
Díaz S, Lavorel S, McIntyre S, et al.2007. Plant trait responses to grazing- a global synthesis[J]. Global Change Biology, 13(2): 313-341.
doi: 10.1016/j.atmosenv.2008.03.012 |
[23] |
Díaz S, Noy-Meir I, Cabido M.2001. Can grazing response of herbaceous plants be predicted from simple vegetative traits[J]. Journal of Applied Ecology, 38(3): 497-508.
doi: 10.1046/j.1365-2664.2001.00635.x |
[24] |
Dukes J S.2001. Biodiversity and invasibility in grassland microcosms[J]. Oecologia, 126(4): 563-568.
doi: 10.1007/s004420000549 pmid: 28547241 |
[25] |
Fortunel C, Garnier E, Joffre R, et al.2009. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe[J]. Ecology, 90(3): 598-611.
doi: 10.1890/08-0418.1 pmid: 19341132 |
[26] |
Funk J L, Larson J E, Ames G M, et al.2017. Revisiting the Holy Grail: Using plant functional traits to understand ecological processes[J]. Biological Reviews, 92(2): 1156-1173.
doi: 10.1111/brv.12275 pmid: 27103505 |
[27] |
Gamfeldt L, Hillebrand H, Jonsson P R.2008. Multiple functions increase the importance of biodiversity for overall ecosystem functioning[J]. Ecology, 89(5): 1223-1231.
doi: 10.1890/06-2091.1 pmid: 18543617 |
[28] |
Garnier E, Cortez J, Billès G, et al.2004. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology, 85(9): 2630-2637.
doi: 10.1890/03-0799 |
[29] |
Garnier E, Lavorel S, Ansquer P, et al.2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European plots[J]. Annals of Botany, 99(5): 967-985.
doi: 10.1093/aob/mcl215 pmid: 17085470 |
[30] |
Grime J P.1997. Biodiversity and ecosystem function: The debate deepens[J]. Science, 277: 1260-1261.
doi: 10.1126/science.277.5330.1260 |
[31] |
Grime J P.1998. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects[J]. Journal of Ecology, 86(6): 902-910.
doi: 10.1046/j.1365-2745.1998.00306.x |
[32] |
Guo C Y, Ma L N, Yuan S, et al.2017. Morphological, physiological and anatomical traits of plant functional types in temperate grasslands along a large-scale aridity gradient in northeastern China[J]. Scientific Reports, 7: 40900.
doi: 10.1038/srep40900 pmid: 5247725 |
[33] |
Han W X, Fang J Y, Guo D L, et al.2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 168(2): 377-385.
doi: 10.1111/j.1469-8137.2005.01530.x pmid: 16219077 |
[34] |
He J-S, Wang L, Flynn D F B, et al.2008. Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia, 155(2): 301-310.
doi: 10.1007/s00442-007-0912-y pmid: 18278518 |
[35] |
He J-S, Wang Z H, Wang X P, et al.2006. A test of the generality of leaf trait relationships on the Tibetan Plateau[J]. New Phytologist, 170(4): 835-848.
doi: 10.1111/j.1469-8137.2006.01704.x pmid: 16684242 |
[36] |
He N P, Liu C C, Tian M, et al.2018. Variation in leaf anatomical traits from tropical to cold-temperate forests and linkage to ecosystem functions[J]. Functional Ecology, 32: 10-19.
doi: 10.1111/1365-2435.12934 |
[37] | Hodgson J G, Illius A W.1996. The ecology and management of grazing systems[M]. Wallingford, Oxon, Connecticut: CAB International. |
[38] |
Hodgson J G, Wilson P J, Hunt R, et al.1999. Allocating C-S-R plant functional types: A soft approach to a hard problem[J]. Oikos, 85(2): 282-294.
doi: 10.2307/3546494 |
[39] |
Hooper D U, Vitousek P M.1997. The effects of plant composition and diversity on ecosystem processes[J]. Science, 277: 1302-1305.
doi: 10.1126/science.277.5330.1302 |
[40] |
Iversen C M, Mccormack M L, Powell A S, et al.2017. A global fine-root ecology database to address below-ground challenges in plant ecology[J]. New Phytologist, 215(1): 15-26.
doi: 10.1111/nph.14486 |
[41] |
Kattge J, Díaz S, Lavorel S, et al.2011. TRY-a global database of plant traits[J]. Global Change Biology, 17(9): 2905-2935.
doi: 10.1111/gcb.v17.9 |
[42] |
Kleyer M, Bekker R M, Knevel I C, et al.2008. The LEDA Traitbase: A database of life-history traits of the Northwest European flora[J]. Journal of Ecology, 96(6): 1266-1274.
doi: 10.1111/jec.2008.96.issue-6 |
[43] |
Knevel I C, Bekker R M, Bakker J P, et al.2003. Life-history traits of the Northwest European flora: The LEDA database[J]. Journal of Vegetation Science, 14(4): 611-614.
doi: 10.1111/j.1654-1103.2003.tb02188.x |
[44] |
Lavorel S, Garnier E.2002. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail[J]. Functional Ecology, 16(5): 545-556.
doi: 10.1046/j.1365-2435.2002.00664.x |
[45] |
Lavorel S, Grigulis K, McIntyre S, et al.2008. Assessing functional diversity in the field-methodology matters![J]. Functional Ecology, 22(1): 134-147.
doi: 10.1111/j.1365-2435.2007.01339.x |
[46] |
Levine J M.2016. Ecology: A trail map for trait-based studies[J]. Nature, 529: 163-164.
doi: 10.1038/nature16862 pmid: 26700809 |
[47] |
Loreau M, Naeem S, Inchausti P, et al.2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges[J]. Science, 294: 804-808.
doi: 10.1126/science.1064088 pmid: 11679658 |
[48] |
Louault F, Pillar V D, Aufrère J, et al.2005. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland[J]. Journal of Vegetation Science, 16(2): 151-160.
doi: 10.1111/j.1654-1103.2005.tb02350.x |
[49] |
Mason N W H, MacGillivray K, Steel J B, et al.2003. An index of functional diversity[J]. Journal of Vegetation Science, 14(4): 571-578.
doi: 10.1111/j.1654-1103.2003.tb02184.x |
[50] |
Mason N W H, Mouillot D, Lee W G, et al.2005. Functional richness, functional evenness and functional divergence: The primary components of functional diversity[J]. Oikos, 111(1): 112-118.
doi: 10.1111/j.0030-1299.2005.13886.x |
[51] |
Mokany K, Ash J, Roxburgh S.2008. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland[J]. Journal of Ecology, 96(5): 884-893.
doi: 10.1111/j.1365-2745.2008.01395.x |
[52] |
Mouchet M A, Villéger S, Mason N W H, et al.2010. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules[J]. Functional Ecology, 24(4): 867-876.
doi: 10.1111/j.1365-2435.2010.01695.x |
[53] |
Mouillot D, Mason W H N, Dumay O, et al.2005. Functional regularity: A neglected aspect of functional diversity[J]. Oecologia, 142(3): 353-359.
doi: 10.1007/s00442-004-1744-7 pmid: 15655690 |
[54] |
Nunes A, Köbel M, Pinho P, et al.2017. Which plant traits respond to aridity? A critical step to assess functional diversity in Mediterranean drylands[J]. Agricultural and Forest Meteorology, 239: 176-184.
doi: 10.1016/j.agrformet.2017.03.007 |
[55] |
Nyström M, Folke C.2001. Spatial resilience of coral reefs[J]. Ecosystems, 4(5): 406-417.
doi: 10.1007/s10021-001-0019-y |
[56] |
Pérez-Harguindeguy N, Díaz S, Garnier E, et al.2013. New handbook for standardised measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 61(3): 167.
doi: 10.1071/BT12225 |
[57] |
Perronne R, Munoz F, Borgy B, et al.2017. How to design trait-based analyses of community assembly mechanisms: Insights and guidelines from a literature review[J]. Perspectives in Plant Ecology, Evolution and Systematics, 25: 29-44.
doi: 10.1016/j.ppees.2017.01.004 |
[58] |
Pescador D S, Sierra-Almeida Á, Torres P J, et al.2016. Summer freezing resistance: A critical filter for plant community assemblies in Mediterranean high mountains[J]. Frontiers in Plant Science, 7: 194.
doi: 10.3389/fpls.2016.00194 pmid: 4761790 |
[59] |
Petchey O L, Gaston K J.2002. Functional diversity (FD), species richness and community composition[J]. Ecology Letters, 5(3): 402-411.
doi: 10.1046/j.1461-0248.2002.00339.x |
[60] |
Petchey O L, Gaston K J.2006. Functional diversity: Back to basics and looking forward[J]. Ecology Letters, 9(6): 741-758.
doi: 10.1111/ele.2006.9.issue-6 |
[61] |
Prieur-Richard A-H, Lavorel S.2000. Invasions: The perspective of diverse plant communities[J]. Austral Ecology, 25(1): 1-7.
doi: 10.1046/j.1442-9993.2000.01033.x |
[62] |
Qi W, Zhou X, Ma M, et al.2015. Elevation, moisture and shade drive the functional and phylogenetic meadow communities' assembly in the northeastern Tibetan Plateau[J]. Community Ecology, 16(1): 66-75.
doi: 10.1556/168.2015.16.1.8 |
[63] |
Reich P B, Luo Y J, Bradford J B, et al.2014. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(38): 13721-13726.
doi: 10.1073/pnas.1216053111 |
[64] |
Reich P B, Oleksyn J.2004. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 101(30): 11001-11006.
doi: 10.1073/pnas.0403588101 pmid: 15213326 |
[65] |
Reich P B, Rich R L, Lu X J, et al.2014. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(38): 13703-13708.
doi: 10.1073/pnas.1216054110 |
[66] |
Reich P B, Walters M B, Ellsworth D S.1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems[J]. Ecological Monographs, 62(3): 365-392.
doi: 10.2307/2937116 |
[67] |
Reich P B, Walters M B, Ellsworth D S.1997. From tropics to tundra: Global convergence in plant functioning[J]. Proceedings of the National Academy of Sciences of the United States of America, 94(25): 13730-13734.
doi: 10.1073/pnas.94.25.13730 pmid: 9391094 |
[68] |
Reich P B, Wright I J, Lusk C H.2007. Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis[J]. Ecological Applications, 17(7): 1982-1988.
doi: 10.1890/06-1803.1 |
[69] |
Ricotta C, Moretti M.2011. CWM and Rao's quadratic diversity: A unified framework for functional ecology[J]. Oecologia, 167(1): 181-188.
doi: 10.1007/s00442-011-1965-5 pmid: 21424717 |
[70] |
Rusch G M, Skarpe C, Halley D J.2009. Plant traits link hypothesis about resource-use and response to herbivory[J]. Basic and Applied Ecology, 10(5): 466-474.
doi: 10.1016/j.baae.2009.01.004 |
[71] |
Sabaté S, Sala A, Gracia C A.1995. Nutrient content in Quercus ilex canopies: Seasonal and spatial variation within a catchment[J]. Plant and Soil, 168-169(1): 297-304.
doi: 10.1002/art.21718 |
[72] |
Sandel B, Goldstein L J, Kraft N J B, et al.2010. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation[J]. New Phytologist, 188(2): 565-575.
doi: 10.1111/j.1469-8137.2010.03382.x |
[73] |
Schellenberger Costa D, Gerschlauer F, Pabst H, et al.2017. Community-weighted means and functional dispersion of plant functional traits along environmental gradients on Mount Kilimanjaro[J]. Journal of Vegetation Science, 28(4): 684-695.
doi: 10.1111/jvs.12542 |
[74] |
Schneider F D, Morsdorf F, Schmid B, et al.2017. Mapping functional diversity from remotely sensed morphological and physiological forest traits[J]. Nature Communications, 8: 1441.
doi: 10.1038/s41467-017-01530-3 pmid: 5682291 |
[75] |
Schönbach P, Wan H W, Gierus M, et al.2011. Grassland responses to grazing: Effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem[J]. Plant and Soil, 340(1-2): 103-115.
doi: 10.1007/s11104-010-0366-6 |
[76] |
Schumacher J, Roscher C.2009. Differential effects of functional traits on aboveground biomass in semi-natural grasslands[J]. Oikos, 118(11): 1659-1668.
doi: 10.1111/j.1600-0706.2009.17711.x |
[77] |
Su Y J, Ma Q, Guo Q H.2017. Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery[J]. International Journal of Digital Earth, 10(3): 307-323.
doi: 10.1080/17538947.2016.1227380 |
[78] |
Suding K N, Goldberg D E, Hartman K M.2003. Relationships among species traits: Separating levels of response and identifying linkages to abundance[J]. Ecology, 84(1): 1-16.
doi: 10.1890/0012-9658(2003)084[0001:RASTSL]2.0.CO;2 |
[79] |
Suding K N, Goldstein L J.2008. Testing the Holy Grail framework: Using functional traits to predict ecosystem change[J]. New Phytologist, 180(3): 559-562.
doi: 10.1111/j.1469-8137.2008.02650.x pmid: 19138225 |
[80] |
Tilman D.1997. Distinguishing between the effects of species diversity and species composition[J]. Oikos, 80(1): 185.
doi: 10.2307/3546532 |
[81] |
Tilman D.2000. Causes, consequences and ethics of biodiversity[J]. Nature, 405: 208-211.
doi: 10.1038/35012217 pmid: 10821280 |
[82] |
Tilman D, Knops J, Wedin D, et al.1997. The influence of functional diversity and composition on ecosystem processes[J]. Science, 277: 1300-1302.
doi: 10.1126/science.277.5330.1300 |
[83] |
van Bodegom P M, Douma J C, Verheijen L M.2014. A fully traits-based approach to modeling global vegetation distribution[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(38): 13733-13738.
doi: 10.1073/pnas.1304551110 pmid: 25225413 |
[84] |
Vile D, Shipley B, Garnier E.2006. Ecosystem productivity can be predicted from potential relative growth rate and species abundance[J]. Ecology Letters, 9(9): 1061-1067.
doi: 10.1111/j.1461-0248.2006.00958.x pmid: 16925655 |
[85] |
Villéger S, Mason N W H, Mouillot D.2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology[J]. Ecology, 89(8): 2290-2301.
doi: 10.1890/07-1206.1 |
[86] |
Violle C, Reich P B, Pacala S W, et al.2014. The emergence and promise of functional biogeography[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(38): 13690-13696.
doi: 10.1073/pnas.1415442111 pmid: 25225414 |
[87] | Wang H, Harrison S P, Colin Prentice I, et al.2017. The China plant trait database: Toward a comprehensive regional compilation of functional traits for land plants[J]. Ecology, doi: 10.1002/ecy.2091. (in press) |
[88] |
Wang R L, Yu G R, He N P, et al.2016. Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China[J]. Journal of Geographical Sciences, 26(1): 15-26.
doi: 10.1007/s11442-016-1251-x |
[89] |
Westley L C.1993. The effect of inflorescence bud removal on tuber production in Helianthus tuberosus L. (Asteraceae)[J]. Ecology, 74(7): 2136-2144.
doi: 10.2307/1940858 |
[90] |
Wright I J, Reich P B, Westoby M.2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats[J]. Functional Ecology, 15(4): 423-434.
doi: 10.1046/j.0269-8463.2001.00542.x |
[91] |
Wright I J, Reich P B, Cornelissen J H C, et al.2005. Modulation of leaf economic traits and trait relationships by climate[J]. Global Ecology and Biogeography, 14(5): 411-421.
doi: 10.1111/j.1466-822x.2005.00172.x |
[92] |
Wright I J, Reich P B, Westoby M, et al.2004. The worldwide leaf economics spectrum[J]. Nature, 428: 821-827.
doi: 10.1038/nature02403 |
[93] |
Zheng S X, Ren H Y, Lan Z C, et al.2010. Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community[J]. Biogeosciences, 7(3): 1117-1132.
doi: 10.5194/bgd-6-9945-2009 |
[1] | 李道峰, 刘昌明. 黄河流域水循环地理信息系统平台构建初探[J]. 地理科学进展, 2003, 22(5): 472-478. |
|