地理科学进展 ›› 2018, Vol. 37 ›› Issue (1): 79-92.doi: 10.18306/dlkxjz.2018.01.009
史舟1(), 徐冬云1, 滕洪芬1, 胡月明2, 潘贤章3, 张甘霖3
收稿日期:
2017-12-19
修回日期:
2018-01-14
出版日期:
2018-01-28
发布日期:
2018-01-28
作者简介:
作者简介:史舟(1970-),男,教授,博士生导师,主要从事农业遥感与信息技术方面的研究,E-mail:
基金资助:
Zhou SHI1(), Dongyun XU1, Hongfen TENG1, Yueming HU2, Xianzhang PANG3, Ganlin ZHANG3
Received:
2017-12-19
Revised:
2018-01-14
Online:
2018-01-28
Published:
2018-01-28
Supported by:
摘要:
土壤作为自然地理学的重要研究对象之一,是联系大气、水、生物等其它地理要素的重要枢纽,其信息的快速准确获取研究对现代地理学的发展具有重要意义。本文重点介绍卫星、航空、无人机和地面不同平台搭载的不同类型传感器的探测原理;总结国内外基于星地传感技术的土壤信息快速获取方法及其在土壤属性预测和制图中的应用;阐述现代土壤信息获取在土壤地理学中的应用情况;展望当前土壤星地传感器技术的发展趋势。
史舟, 徐冬云, 滕洪芬, 胡月明, 潘贤章, 张甘霖. 土壤星地传感技术现状与发展趋势[J]. 地理科学进展, 2018, 37(1): 79-92.
Zhou SHI, Dongyun XU, Hongfen TENG, Yueming HU, Xianzhang PANG, Ganlin ZHANG. Soil information acquisition based on remote sensing and proximal soil sensing: Current status and prospect[J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 79-92.
[1] | 陈颂超, 冯来磊, 李硕, 等. 2015. 基于局部加权回归的土壤全氮含量可见-近红外光谱反演[J]. 土壤学报, 52(2): 312-320. |
[Chen S C, Feng L L, Li S, et al.2015. Vis-NIR spectral inversion for prediction of soil total nitrogen content in laboratory based on locally weighted regression[J]. Acta Pedologica Sinica, 52(2): 312-320.] | |
[2] | 崔凡, 刘杰, 吴志远, 等. 2014. 探地雷达功率谱模型在砂壤含水率和紧实度探测中的应用[J]. 农业工程学报, 30(16): 99-105. |
[Cui F, Liu J, Wu Z Y, et al.2014. Application of ground penetrating radar power spectrum model in detection of water content and degrees of compactness in sandy loam[J]. Transactions of the Chinese Society of Agricultural Engineering, 30(16): 99-105.] | |
[3] |
傅伯杰. 2014. 地理学综合研究的途径与方法: 格局与过程耦合[J]. 地理学报, 69(8): 1052-1059.
doi: 10.11821/dlxb201408002 |
[Fu B J.2014. The integrated studies of geography: Coupling of patterns and processes[J]. Acta Geographica Sinica, 69(8): 1052-1059.]
doi: 10.11821/dlxb201408002 |
|
[4] | 侯晓冬, 郭秀军, 贾永刚, 等. 2008. 基于探地雷达回波信号获取污染土壤中污染物含量的研究进展[J]. 地球物理学进展, 23(3): 962-968. |
[Hou X D, Guo X J, Jia Y G, et al.2008. Progress on detection of contamination content in the contaminated soilbased on ground penetrating radar[J]. Progress in Geophysics, 23(3): 962-968.] | |
[5] |
胡振琪, 陈宝政, 陈星彤. 2005. 应用探地雷达检测复垦土壤的分层结构[J]. 中国矿业, 14(3): 73-75.
doi: 10.3969/j.issn.1004-4051.2005.03.020 |
[Hu Z Q, Chen B Z, Chen X T.2005. Study on layer structure of rehabilitated soil using ground-penetrating radar[J]. China Mining Magazine, 14(3): 73-75.]
doi: 10.3969/j.issn.1004-4051.2005.03.020 |
|
[6] | 纪文君, 李曦, 李成学, 等. 2012. 基于全谱数据挖掘技术的土壤有机质高光谱预测建模研究[J]. 光谱学与光谱分析, 32(9): 2393-2398, 2408. |
[Ji W J, Li X, Li C X, et al.2012. Using different data mining algorithms to predict soil organic matter based on visible-near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 32(9): 2393-2398, 2408.] | |
[7] |
亢庆, 张增祥, 赵晓丽. 2008. 基于遥感技术的干旱区土壤分类研究[J]. 遥感学报, 12(1): 159-167.
doi: 10.3321/j.issn:1007-4619.2008.01.021 |
[Kang Q, Zhang Z X, Zhao X L.2008. A study of soil classification based on remote sensing in arid area[J]. Journal of Remote Sensing, 12(1): 159-167.]
doi: 10.3321/j.issn:1007-4619.2008.01.021 |
|
[8] |
李洪义, 史舟, 唐惠丽. 2010. 基于三维普通克立格方法的滨海盐土电导率三维空间变异研究[J]. 土壤学报, 47(2): 359-363.
doi: 10.11766/trxb200805090222 |
[Li H Y, Shi Z, Tang H L.2010. Research on three-dimension spatial variability of soil electrical conductivity of coastal saline land using 3D ordinary kriging method[J]. Acta Pedologica Sinica, 47(2): 359-363.]
doi: 10.11766/trxb200805090222 |
|
[9] | 刘恒柏, 张佳宝, 朱安宁. 2008. 砂壤土中目标物的GPR图像解译及土壤含水量反演[J]. 灌溉排水学报, 27(4): 55-57. |
[Liu H B, Zhang J B, Zhu A N.2008. Ground penetrating radar imagery interpretation of target in sand loamy soil and soil water content inversion[J]. Journal of Irrigation and Drainage, 27(4): 55-57.] | |
[10] | 刘宁, 李新举, 郭斌, 等. 2016. 基于修正介电常数模型的煤矿区复垦土壤压实评价[J]. 水土保持学报, 30(4): 318-322. |
[Liu N, Li X J, Guo B, et al.2016. Compaction evaluation of reclamation soil in coal mining district based on modified dielectric constant model[J]. Journal of Soil and Water Conservation, 30(4): 318-322.] | |
[11] | 冉景, 王德建, 王灿, 等. 2014. 便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J]. 光谱学与光谱分析, 34(11): 3113-3118. |
[Ran J, Wang D J, Wang C, et al.2014. Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis[J]. Spectroscopy and Spectral Analysis, 34(11): 3113-3118.] | |
[12] |
邵芸, 吕远, 董庆, 等. 2002. 含水含盐土壤的微波介电特性分析研究[J]. 遥感学报, 6(6): 416-423.
doi: 10.11834/jrs.20020604 |
[Shao Y, Lu Y, Dong Q, et al.2002. Study on soil microwave dielectric characteristic as salinity and water content[J]. Journal of Remote Sensing, 6(6): 416-423.]
doi: 10.11834/jrs.20020604 |
|
[13] | 史舟, 等. 2014. 土壤地面高光谱遥感原理与方法[M]. 北京: 科学出版社. |
[Shi Z, et al.2014b. Turang dimian gaoguangpu yaogan yuanli yu fangfa[M]. Beijing, China: Science Press.] | |
[14] | 史舟, 王乾龙, 彭杰, 等. 2014. 中国主要土壤高光谱反射特性分类与有机质光谱预测模型[J]. 中国科学: 地球科学, 44(5): 978-988. |
[Shi Z, Wang Q L, Peng J, et al.2014a. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations[J]. Science China Earth Sciences, 57(7): 1671-1680.] | |
[15] | 王人潮, 王深法, 苏海萍. 1985. MSS卫片目视土壤解译与制图技术研究[J]. 科技通报, 1(1): 39-41. |
[Wang R C, Wang S F, Su H P.1985. MSS weipian mushi turang jieyi yu zhitu jishu[J]. Bulletin of Science and Technology, 1(1): 39-41.] | |
[16] | 王瑞燕, 尹涛, 胡盈盈, 等. 2017. 基于低频探地雷达的土壤累积入渗量的探测方法研究[J]. 土壤学报, 54(4): 885-893. |
[Wang R Y, Yin T, Hu Y Y, et al.2017. Method for measurement of soil cumulative infiltration based on low frequency GPR[J]. Acta Pedologica Sinica, 54(4): 885-893.] | |
[17] | 余克强, 赵艳茹, 刘飞, 等. 2017. 应用激光诱导击穿光谱对土壤中多元素同时定量分析[J]. 光谱学与光谱分析, 37(9): 2879-2884. |
[Yu K Q, Zhao Y R, Liu F, et al.2017. Laser-induced breakdown spectroscopy for simultaneous quantitative analysis of multi-elements in soil[J]. Spectroscopy and Spectral Analysis, 37(9): 2879-2884.] | |
[18] |
张甘霖, 史学正, 龚子同. 2008. 中国土壤地理学发展的回顾与展望[J]. 土壤学报, 45(5): 792-801.
doi: 10.3321/j.issn:0564-3929.2008.05.005 |
[Zhang G L, Shi X Z, Gong Z T.2008. Retrospect and prospect of soil geography in China[J]. Acta Pedologica Sinica, 45(5): 792-801.]
doi: 10.3321/j.issn:0564-3929.2008.05.005 |
|
[19] |
周银, 刘丽雅, 卢艳丽, 等. 2015. 星地多源数据的区域土壤有机质数字制图[J]. 遥感学报, 19(6): 998-1006.
doi: 10.11834/jrs.20154257 |
[Zhou Y, Liu L Y, Lu Y L, et al.2015. Regional scale mapping of soil organic matter using remote sensing and visible-near infrared spectroscopy[J]. Journal of Remote Sensing, 19(6): 998-1006.]
doi: 10.11834/jrs.20154257 |
|
[20] |
Bartholomeus H, Kooistra L, Stevens A, et al.2011. Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy[J]. International Journal of Applied Earth Observation and Geoinformation, 13(1): 81-88.
doi: 10.1016/j.jag.2010.06.009 |
[21] |
Bell D, Menges C, Ahmad W, et al.2001. The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR[J]. Remote Sensing of Environment, 75(3): 375-384.
doi: 10.1016/S0034-4257(00)00180-2 |
[22] |
Bowers S A, Hanks, R J.1965. Reflection of radiant energy from soils[J]. Soil Science, 100(2): 130-138.
doi: 10.1097/00010694-196508000-00009 |
[23] |
Brown D J, Shepherd K D, Walsh M G, et al.2006. Global soil characterization with VNIR diffuse reflectance spectroscopy[J]. Geoderma, 132(3-4): 273-290.
doi: 10.1016/j.geoderma.2005.04.025 |
[24] |
Bushnell T M.1929. Aerial photography and soil survey[J]. Soil Science Society of America Journal, (2001): 23-28.
doi: 10.2136/sssaj1929.036159950B1020010004x |
[25] |
Chakraborty S, Weindorf D C, Li B, et al.2015. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils[J]. Science of the Total Environment, 514: 399-408.
doi: 10.1016/j.scitotenv.2015.01.087 pmid: 25681776 |
[26] |
Chang C W, Laird D A, Mausbach M J, et al.2001. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J]. Soil Science Society of America Journal, 65(2): 480-490.
doi: 10.2136/sssaj2001.652480x |
[27] |
Chappell A, Baldock J, Sanderman J.2016. The global significance of omitting soil erosion from soil organic carbon cycling schemes[J]. Nature Climate Change, 6: 187-191.
doi: 10.1038/nclimate2829 |
[28] |
Chen K S, Wu T D, Tsang L, et al.2003. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 41(1): 90-101.
doi: 10.1109/TGRS.2002.807587 |
[29] |
Christy C D.2008. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy[J]. Computers and Electronics in Agriculture, 61(1): 10-19.
doi: 10.1016/j.compag.2007.02.010 |
[30] |
Ciucci A, Palleschi V, Rastelli S, et al.1996. Trace pollutants analysis in soil by a time-resolved laser-induced breakdown spectroscopy technique[J]. Applied Physics B, 63(2): 185-190.
doi: 10.1007/BF01095271 |
[31] |
Colliander A, Fisher J B, Halverson G, et al.2017. Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15[J]. IEEE Geoscience and Remote Sensing Letters, 14(11): 2107-2111.
doi: 10.1109/LGRS.2017.2753203 |
[32] |
De Jong E, Ballantyne A K, Cameron D R, et al.1979. Measurement of apparent electrical conductivity of soils by an electromagnetic induction probe to aid salinity surveys[J]. Soil Science Society of America Journal, 43(4): 810-812.
doi: 10.2136/sssaj1979.03615995004300040040x |
[33] |
Doolittle J A, Brevik E C.2014. The use of electromagnetic induction techniques in soils studies[J]. Geoderma, 223-225: 33-45.
doi: 10.1016/j.geoderma.2014.01.027 |
[34] |
El Haddad J, Villot-Kadri M, Ismaël A, et al.2013. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 79-80: 51-57.
doi: 10.1016/j.sab.2012.11.007 |
[35] |
Fung A K, Li Z, Chen K S.1992. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 356-369.
doi: 10.1109/36.134085 |
[36] |
Gogé F, Joffre R, Jolivet C, et al.2012. Optimization criteria in sample selection step of local regression for quantitative analysis of large soil NIRS database[J]. Chemometrics and Intelligent Laboratory Systems, 110(1): 168-176.
doi: 10.1016/j.chemolab.2011.11.003 |
[37] |
Goglio P, Grant B B, Smith W N, et al.2014. Impact of management strategies on the global warming potential at the cropping system level[J]. Science of the Total Environment, 490: 921-933.
doi: 10.1016/j.scitotenv.2014.05.070 pmid: 24911772 |
[38] |
Goldshleger N, Ben-Dor E, Lugassi R, et al.2010. Soil degradation monitoring by remote sensing: Examples with three degradation processes[J]. Soil Science Society of America Journal, 74(5): 1433-1445.
doi: 10.2136/sssaj2009.0351 |
[39] |
Gomez C, Viscarra Rossel R A, McBratney A B.2008. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study[J]. Geoderma, 146(3-4): 403-411.
doi: 10.1016/j.geoderma.2008.06.011 |
[40] |
Grunwald S, McSweeney K, Rooney D J, et al.2001. Soil layer models created with profile cone penetrometer data[J]. Geoderma, 103(1-2): 181-201.
doi: 10.1016/S0016-7061(01)00076-3 |
[41] |
Grunwald S, Vasques G M, Rivero R G.2015. Fusion of soil and remote sensing data to model soil properties[J]. Advances in Agronomy, 131: 1-109.
doi: 10.1016/bs.agron.2014.12.004 |
[42] |
Guerrero C, Zornoza R, Gómez I, et al.2010. Spiking of NIR regional models using samples from target sites: Effect of model size on prediction accuracy[J]. Geoderma, 158(1-2): 66-77.
doi: 10.1016/j.geoderma.2009.12.021 |
[43] |
Hahn C, Gloaguen R.2008. Estimation of soil types by non linear analysis of remote sensing data[J]. Nonlinear Processes in Geophysics, 15(1): 115-126.
doi: 10.5194/npg-15-115-2008 |
[44] |
Hengl T, Heuvelink G B M, Kempen B, et al.2015. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions[J]. PLoS One, 10(6): e0125814.
doi: 10.1371/journal.pone.0125814 pmid: 4482144 |
[45] |
Horta A, Malone B, Stockmann U, et al.2015. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review[J]. Geoderma, 241-242: 180-209.
doi: 10.1016/j.geoderma.2014.11.024 |
[46] |
Hu B F, Chen S C, Hu J, et al.2017. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution[J]. PLoS One, 12(2): e0172438.
doi: 10.1371/journal.pone.0172438 pmid: 5325278 |
[47] |
Huang J, Taghizadeh-Mehrjardi R, Minasny B, et al.2015. Modeling soil salinity along a hillslope in Iran by inversion of EM38 data[J]. Soil Science Society of America Journal, 79(4): 1142-1153.
doi: 10.2136/sssaj2014.11.0447 |
[48] |
Huisman J A, Hubbard S S, Redman J D, et al.2003. Measuring soil water content with ground penetrating radar: A review[J]. Vadose Zone Journal, 2(4): 476-491.
doi: 10.2136/vzj2003.0476 |
[49] |
Ito A, Wagai R.2017. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies[J]. Scientific Data, 4: 170103.
doi: 10.1038/sdata.2017.103 pmid: 5667577 |
[50] |
Jabbar M, Chen X L.2008. Land degradation due to salinization in arid and semi-arid regions with the aid of geo-information techniques[J]. Geo-spatial Information Science, 11(2): 112-120.
doi: 10.1007/s11806-008-0013-z |
[51] | Jackson T J, O'neill P E.1987. Salinity effects on the microwave emission of soils[J]. IEEE Transactions on Geoscience and Remote Sensing, GE-25(2): 214-220. |
[52] |
Ji W, Viscarra Rossel R A, Shi Z.2015. Accounting for the effects of water and the environment on proximally sensed vis-NIR soil spectra and their calibrations[J]. European Journal of Soil Science, 66(3): 555-565.
doi: 10.1111/ejss.12239 |
[53] |
Keen B A, Haines W B.1925. Studies in soil cultivation. I. The evolution of a reliable dynamometer technique for use in soil cultivation experiments[J]. The Journal of Agricultural Science, 15(3): 375-386.
doi: 10.1017/S002185960000681X |
[54] |
Kim K R, Kim G, Kim J Y, et al.2014. Kriging interpolation method for laser induced breakdown spectroscopy (LIBS) analysis of Zn in various soils[J]. Journal of Analytical Atomic Spectrometry, 29(1): 76-84.
doi: 10.1039/c3ja50233c |
[55] | Knadel M, Deng F, Thomsen A, et al.2012. Development of a Danish national Vis-NIR soil spectral library for soil organic carbon determination[C]//Digital soil assessments and beyond: Proceedings of the 5th global workshop on digital soil mapping. Sydney, Australia: CRC Press: 403-408. |
[56] | Kristof S J, Baumgardner M F, Johannsen C J.1973. Spectral mapping of soil organic matter[R]. LARS Technical Reports. Purdue, IN: Laboratory for Applications of Remote Sensing: 26. |
[57] |
Kruse F A, Boardman J W, Huntington J F.2003. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1388-1400.
doi: 10.1109/TGRS.2003.812908 |
[58] |
Kuang B, Mahmood H S, Quraishi M Z, et al.2012. Sensing soil properties in the laboratory, in situ, and on-line: A Review[J]. Advances in Agronomy, 114: 155-223.
doi: 10.1016/B978-0-12-394275-3.00003-1 |
[59] |
Li H Y, Shi Z, Webster R, et al.2013. Mapping the three-dimensional variation of soil salinity in a rice-paddy soil[J]. Geoderma, 195-196: 31-41.
doi: 10.1016/j.geoderma.2012.11.005 |
[60] |
Li H Y, Webster R, Shi Z.2015b. Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited[J]. Geoderma, 237-238: 71-77.
doi: 10.1016/j.geoderma.2014.08.008 |
[61] |
Li S, Shi Z, Chen S C, et al.2015a. In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai-Tibet Plateau[J]. Environmental Science & Technology, 49(8): 4980-4987.
doi: 10.1021/es504272x pmid: 25828919 |
[62] |
Li Y Y, Zhao K, Zheng X M, et al.2014. Identification of saline-alkali soil based on target decomposition of full-polarization radar data[J]. Journal of Applied Remote Sensing, 8(1): 083511.
doi: 10.1117/1.JRS.8.083511 |
[63] |
Liu F, Geng X Y, Zhu A X, et al.2012. Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS[J]. Geoderma, 171-172: 44-52.
doi: 10.1016/j.geoderma.2011.05.007 |
[64] |
Liu Y, Pan X Z, Shi R J, et al.2015. Predicting soil salt content over partially vegetated surfaces using non-negative matrix factorization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(11): 5305-5316.
doi: 10.1109/JSTARS.2015.2478490 |
[65] |
Liu Y, Pan X Z, Wang C K, et al.2015. Predicting soil salinity with Vis-NIR spectra after removing the effects of soil moisture using external parameter orthogonalization[J]. PLoS One, 10(10): e0140688.
doi: 10.1371/journal.pone.0140688 pmid: 4607364 |
[66] |
Macdonald H C, Waite W P.1971. Soil moisture detection with imaging radars[J]. Water Resources Research, 7(1): 100-110.
doi: 10.1029/WR007i001p00100 |
[67] |
Martínez G, Vanderlinden K, Giráldez J V, et al.2010. Field-scale soil moisture pattern mapping using electromagnetic induction[J]. Vadose Zone Journal, 9(4): 871-881.
doi: 10.2136/vzj2009.0160 |
[68] |
Melendez-Pastor I, Navarro-Pedreño J, Koch M, et al.2010. Applying imaging spectroscopy techniques to map saline soils with ASTER images[J]. Geoderma, 158(1-2): 55-65.
doi: 10.1016/j.geoderma.2010.02.015 |
[69] |
Metternicht G I.1998. Fuzzy classification of JERS-1 SAR data: An evaluation of its performance for soil salinity mapping[J]. Ecological Modelling, 111(1): 61-74.
doi: 10.1016/S0304-3800(98)00095-7 |
[70] |
Miller B A, Koszinski S, Wehrhan M, et al.2015. Impact of multi-scale predictor selection for modeling soil properties[J]. Geoderma, 239-240: 97-106.
doi: 10.1016/j.geoderma.2014.09.018 |
[71] |
Minasny B, McBratney A B.2016. Digital soil mapping: A brief history and some lessons[J]. Geoderma, 264: 301-311.
doi: 10.1016/j.geoderma.2015.07.017 |
[72] |
Minasny B, McBratney A B, Bellon-Maurel V, et al.2011. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon[J]. Geoderma, 167-168: 118-124.
doi: 10.1016/j.geoderma.2011.09.008 |
[73] |
Minet J, Bogaert P, Vanclooster M, et al.2012. Validation of ground penetrating radar full-waveform inversion for field scale soil moisture mapping[J]. Journal of Hydrology, 424-425: 112-123.
doi: 10.1016/j.jhydrol.2011.12.034 |
[74] |
Moore I D, Gessler P E, Nielsen G A, et al.1993. Soil attribute prediction using terrain analysis[J]. Soil Science Society of America Journal, 57(2): 443-452.
doi: 10.2136/sssaj1993.03615995005700020026x |
[75] |
Moran M S, Peters-Lidard C D, Watts J M, et al.2004. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models[J]. Canadian Journal of Remote Sensing, 30(5): 805-826.
doi: 10.5589/m04-043 |
[76] |
Mouazen A M, De Baerdemaeker J, Ramon H.2005. Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer[J]. Soil and Tillage Research, 80(1-2): 171-183.
doi: 10.1016/j.still.2004.03.022 |
[77] |
Mulder V L, De Bruin S, Schaepman M E, et al.2011. The use of remote sensing in soil and terrain mapping: A review[J]. Geoderma, 162(1-2): 1-19.
doi: 10.1016/j.geoderma.2010.12.018 |
[78] |
Muñoz J D, Kravchenko A.2011. Soil carbon mapping using on-the-go near infrared spectroscopy, topography and aerial photographs[J]. Geoderma, 166(1): 102-110.
doi: 10.1016/j.geoderma.2011.07.017 |
[79] |
Nanni M R, Dematte J A M, Chicati M L, et al.2012. Soil surface spectral data from Landsat imagery for soil class discrimination[J]. Acta Scientiarum. Agronomy, 34(1): 103-112.
doi: 10.4025/actasciagron.v34i1.12204 |
[80] |
Nocita M, Stevens A, Van Wesemael B, et al.2015. Soil Spectroscopy: An alternative to wet chemistry for soil monitoring[J]. Advances in Agronomy, 132: 139-159.
doi: 10.1016/bs.agron.2015.02.002 |
[81] |
Oh Y, Sarabandi K, Ulaby F T.1992. An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE transactions on Geoscience and Remote Sensing, 30(2): 370-381.
doi: 10.1109/36.134086 |
[82] |
O'Rourke S M, Angers D A, Holden N M, et al.2015. Soil organic carbon across scales[J]. Global Change Biology, 21(10): 3561-3574.
doi: 10.1111/gcb.12959 pmid: 25918852 |
[83] |
O'Rourke S M, Stockmann U, Holden N M, et al.2016. An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties[J]. Geoderma, 279: 31-44.
doi: 10.1016/j.geoderma.2016.05.005 |
[84] |
Petropoulos G P, Ireland G, Barrett B.2015. Surface soil moisture retrievals from remote sensing: Current status, products & future trends[J]. Physics and Chemistry of the Earth, Parts A/B/C, 83-84: 36-56.
doi: 10.1016/j.pce.2015.02.009 |
[85] |
Piles M, Sánchez N, Vall-llossera M, et al.2014. A downscaling approach for SMOS land observations: Evaluation of high-resolution soil moisture maps over the Iberian Peninsula[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9): 3845-3857.
doi: 10.1109/JSTARS.2014.2325398 |
[86] |
Ouerghemmi W, Gomez C, Naceur S, et al.2011. Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces[J]. Geoderma, 163(3-4): 227-237.
doi: 10.1016/j.geoderma.2011.04.019 |
[87] |
Quraishi M Z, Mouazen A M.2013. Calibration of an on-line sensor for measurement of topsoil bulk density in all soil textures[J]. Soil and Tillage Research, 126: 219-228.
doi: 10.1016/j.still.2012.08.005 |
[88] | Ristori G, Bruno V.1969. Metallic microelements of soil determined by X-ray fluorescence[J]. Agrochimica, 13(4-5): 367. |
[89] |
Scheinost A C, Kretzschmar R, Pfister S, et al.2002. Combining selective sequential extractions, x-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil[J]. Environmental Science& Technology, 36(23): 5021-5028.
doi: 10.1021/es025669f pmid: 12523415 |
[90] |
Scudiero E, Skaggs T H, Corwin D L.2015. Regional-scale soil salinity assessment using Landsat ETM + canopy reflectance[J]. Remote Sensing of Environment, 169: 335-343.
doi: 10.1016/j.rse.2015.08.026 |
[91] |
Shanahan P W, Binley A, Whalley W R, et al.2015. The use of electromagnetic induction to monitor changes in soil moisture profiles beneath different wheat genotypes[J]. Soil Science Society of America Journal, 79(2): 459-466.
doi: 10.2136/sssaj2014.09.0360 |
[92] | Shi J C, Guo P, Zhao T J, et al.2014. Soil moisture downscaling algorithm for combining radar and radiometer observations for SMAP mission[C]//Proceedings of the 31th URSI general assembly and scientific symposium (URSI GASS). Beijing, China: IEEE: 1-4. |
[93] |
Shi J C, Jiang L M, Zhang L X, et al.2005. A parameterized multifrequency-polarization surface emission model[J]. IEEE Transactions on Geoscience and Remote Sensing, 43(12): 2831-2841.
doi: 10.1109/TGRS.2005.857902 |
[94] |
Shi J C, Wang J, Hsu A Y, et al.1997. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1254-1266.
doi: 10.1109/36.628792 |
[95] |
Shi T Z, Liu H Z, Wang J J, et al.2014. Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants[J]. Environmental Science & Technology, 48(11): 6264-6272.
doi: 10.1021/es405361n pmid: 24804926 |
[96] |
Shonk J L, Gaultney L D, Schulze D G, et al.1991. Spectroscopic sensing of soil organic matter content[J]. Transactions of the ASAE, 34(5): 1978-1984.
doi: 10.13031/2013.31826 |
[97] |
Shrestha R P.2006. Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand[J]. Land Degradation & Development, 17(6): 677-689.
doi: 10.1002/ldr.752 |
[98] | Skidmore A K, Watford F, Luckananurug P, et al.1996. An operational GIS expert system for mapping forest soils[J]. Photogrammetric Engineering and Remote Sensing, 62(5): 501-511. |
[99] |
Stenberg B, Viscarra Rossel R A, Mouazen A M, et al.2010. Visible and near infrared spectroscopy in soil science[J]. Advances in Agronomy, 107: 163-215.
doi: 10.1016/S0065-2113(10)07005-7 |
[100] |
Stevens A, Nocita M, Tóth G, et al.2013. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy[J]. PLoS One, 8(6): e66409.
doi: 10.1371/journal.pone.0066409 pmid: 23840459 |
[101] |
Stevens A, Van Wesemael B, Bartholomeus H, et al.2008. Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils[J]. Geoderma, 144(1-2): 395-404.
doi: 10.1016/j.geoderma.2007.12.009 |
[102] |
Teng H F, Viscarra Rossel R A, Shi Z, et al.2016. Assimilating satellite imagery and visible-near infrared spectroscopy to model and map soil loss by water erosion in Australia[J]. Environmental Modelling & Software, 77: 156-167.
doi: 10.1016/j.envsoft.2015.11.024 |
[103] |
Terra F S, Demattê J A M, Viscarra Rossel R A.2015. Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis-NIR and mid-IR reflectance data[J]. Geoderma, 255-256: 81-93.
doi: 10.1016/j.geoderma.2015.04.017 |
[104] |
Tran A P, Bogaert P, Wiaux F, et al.2015. High-resolution space-time quantification of soil moisture along a hillslope using joint analysis of ground penetrating radar and frequency domain reflectometry data[J]. Journal of Hydrology, 523: 252-261.
doi: 10.1016/j.jhydrol.2015.01.065 |
[105] | USDA (United States Department of Agriculture). 2016. Rapid Carbon Assessment (RaCA): Methodology, Sampling, and Summary[EB/OL]. [2018-01-16]. . |
[106] |
Viscarra Rossel R A, Behrens T.2010. Using data mining to model and interpret soil diffuse reflectance spectra[J]. Geoderma, 158(1-2): 46-54.
doi: 10.1016/j.geoderma.2009.12.025 |
[107] |
Viscarra Rossel R A, Behrens T, Ben-Dor E.2016. A global spectral library to characterize the world's soil[J]. Earth-Science Reviews, 155: 198-230.
doi: 10.1016/j.earscirev.2016.01.012 |
[108] |
Viscarra Rossel R A, Lobsey C R, Sharman C, et al.2017. Novel proximal sensing for monitoring soil organic C stocks and condition[J]. Environmental Science & Technology, 51(10): 5630-5641.
doi: 10.1021/acs.est.7b00889 pmid: 28414454 |
[109] |
Viscarra Rossel R A, McBratney A B.1998. Laboratory evaluation of a proximal sensing technique for simultaneous measurement of soil clay and water content[J]. Geoderma, 85(1): 19-39.
doi: 10.1016/S0016-7061(98)00023-8 |
[110] |
Viscarra Rossel R A, Walvoort D J J, McBratney A B, et al.2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties[J]. Geoderma, 131(1-2): 59-75.
doi: 10.1016/j.geoderma.2005.03.007 |
[111] |
Viscarra Rossel R A, Webster R.2012. Predicting soil properties from the Australian soil visible-near infrared spectroscopic database[J]. European Journal of Soil Science, 63(6): 848-860.
doi: 10.1111/j.1365-2389.2012.01495.x |
[112] |
Viscarra Rossel R A, Webster R, Bui E N, et al.2014. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change[J]. Global Change Biology, 20(9): 2953-2970.
doi: 10.1111/gcb.12569 pmid: 24599716 |
[113] |
Wang C K, Pan X Z.2016. Improving the prediction of soil organic matter using visible and near infrared spectroscopy of moist samples[J]. Journal of Near Infrared Spectroscopy, 24(3): 231-241.
doi: 10.1255/jnirs.1184 |
[114] |
Wang J R, Choudhury B J.1981. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency[J]. Journal of Geophysical Research: Oceans, 86(C6): 5277-5282.
doi: 10.1029/JC086iC06p05277 |
[115] |
Wu C Y, Jacobson A R, Laba M, et al.2009. Alleviating moisture content effects on the visible near-infrared diffuse-reflectance sensing of soils[J]. Soil Science, 174(8): 456-465.
doi: 10.1097/SSL.0b013e3181b21491 |
[116] |
Wu Y Z, Chen J, Wu X M, et al.2005. Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils[J]. Applied Geochemistry, 20(6): 1051-1059.
doi: 10.1016/j.apgeochem.2005.01.009 |
[117] |
Xu D Y, Ma W Z, Chen S C, et al.2018. Assessment of important soil properties related to Chinese Soil Taxonomy based on vis-NIR reflectance spectroscopy[J]. Computers and Electronics in Agriculture, 144: 1-8.
doi: 10.1016/j.compag.2017.11.029 |
[118] |
Zeng C Y, Zhu A X, Liu F, et al.2017. The impact of rainfall magnitude on the performance of digital soil mapping over low-relief areas using a land surface dynamic feedback method[J]. Ecological Indicators, 72: 297-309.
doi: 10.1016/j.ecolind.2016.08.023 |
[119] |
Zhao T J, Shi J C, Bindlish R, et al.2015. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval[J]. Physics and Chemistry of the Earth, Parts A/B/C, 83-84: 65-74.
doi: 10.1109/URSIGASS.2014.6929685 |
[120] |
Zhao Y C, Wang Z G, Sun W X, et al.2010. Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban-rural transition area in Yangtze River Delta region of China[J]. Geoderma, 156(3-4): 216-227.
doi: 10.1016/j.geoderma.2010.02.020 |
[121] |
Zhou Y, Biswas A, Ma Z Q, et al.2016. Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain[J]. Geoderma, 271: 71-79.
doi: 10.1016/j.geoderma.2016.02.006 |
[122] |
Zhou Y, Guo B, Wang S X, et al.2015. An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing[J]. Journal of Arid Land, 7(3): 304-317.
doi: 10.1007/s40333-015-0122-0 |
[1] | 史潇, 王国杰, 孙明, 李玉涛, 王博妮, 沈婕. 高分辨红外辐射探测器地表温度数据在江苏地区1980—2009年间适用性评估[J]. 地理科学进展, 2020, 39(8): 1283-1295. |
[2] | 廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5): 709-715. |
[3] | 胡栩, 聂勇, 徐霞, 蒋盛, 张镱锂. 塔里木盆地南缘和田地区土地利用变化的遥感研究[J]. 地理科学进展, 2020, 39(4): 577-590. |
[4] | 史卓琳, 黄昌. 河流水情要素遥感研究进展[J]. 地理科学进展, 2020, 39(4): 670-684. |
[5] | 唐寅, 王中根, 王婉清, 黄火键, 袁勇. 适用于遥感影像的水生态空间多功能分类体系研究[J]. 地理科学进展, 2020, 39(3): 454-460. |
[6] | 姜凯斯,刘正佳,李裕瑞,王永生,王昱. 黄土丘陵沟壑区典型村域土地利用变化及对区域乡村转型发展的启示[J]. 地理科学进展, 2019, 38(9): 1305-1315. |
[7] | 段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8): 1182-1195. |
[8] | 马明国,汤旭光,韩旭军,时伟宇,宋立生,黄静. 西南岩溶地区碳循环观测与模拟研究进展和展望[J]. 地理科学进展, 2019, 38(8): 1196-1205. |
[9] | 陈颖彪, 郑子豪, 吴志峰, 千庆兰. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展, 2019, 38(2): 205-223. |
[10] | 吴其慧, 李畅游, 孙标, 史小红, 赵胜男, 韩知明. 1986—2017年呼伦湖湖冰物候特征变化[J]. 地理科学进展, 2019, 38(12): 1933-1943. |
[11] | 张洪源, 吴艳红, 刘衍君, 郭立男. 近20年青海湖水量变化遥感分析[J]. 地理科学进展, 2018, 37(6): 823-832. |
[12] | 赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018, 37(2): 198-213. |
[13] | 张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37(2): 214-223. |
[14] | 林珲, 张鸿生, 林殷怡, 魏姗, 吴志峰. 基于城市不透水面—人口关联的粤港澳大湾区人口密度时空分异规律与特征[J]. 地理科学进展, 2018, 37(12): 1644-1652. |
[15] | 左秀玲, 苏奋振, 赵焕庭, 方月, 杨娟. 南海珊瑚礁高分辨率遥感地貌分类体系研究[J]. 地理科学进展, 2018, 37(11): 1463-1472. |
|