地理科学进展 ›› 2018, Vol. 37 ›› Issue (1): 57-65.doi: 10.18306/dlkxjz.2018.01.007
张甘霖1,2,*(), 朱阿兴3,4, 史舟5, 王秋兵6, 刘宝元7, 张兴昌8, 史志华9, 杨金玲1, 刘峰1, 宋效东1, 吴华勇1, 曾荣1
收稿日期:
2018-01-15
修回日期:
2018-01-20
出版日期:
2018-01-28
发布日期:
2018-01-28
通讯作者:
张甘霖
作者简介:
作者简介:田富强(1975-),男,河南人,副教授,从事流域水文过程及模拟、水资源管理等研究,E-mail:
基金资助:
Ganlin ZHANG1,2,*(), A-Xing ZHU3,4, Zhou SHI5, Qiubing WANG6, Baoyuan LIU7, Xingchang ZHANG8, Zhihua SHI9, Jinling YANG1, Feng LIU1, Xiaodong SONG1, Huayong WU1, Rong ZENG1
Received:
2018-01-15
Revised:
2018-01-20
Online:
2018-01-28
Published:
2018-01-28
Contact:
Ganlin ZHANG
Supported by:
摘要:
作为土壤学和地理学学科的分支,土壤地理学是地球表层系统科学的重要组成部分,其核心研究内容是土壤的时空变化。土壤地理学研究对象从传统的土体向地球表层系统视角下的关键带转变,研究方法上全面走向数字化。本文综述了近20年来土壤地理学分支学科包括土壤发生、土壤形态、土壤分类、土壤调查与数字土壤制图等领域的研究进展,指出其发展趋势为:基础理论研究不断拓展、调查技术正经历变革、时空演变从过程观测走向模拟,同时探讨了土壤地理学的未来发展契机与面临的挑战。
张甘霖, 朱阿兴, 史舟, 王秋兵, 刘宝元, 张兴昌, 史志华, 杨金玲, 刘峰, 宋效东, 吴华勇, 曾荣. 土壤地理学的进展与展望[J]. 地理科学进展, 2018, 37(1): 57-65.
Ganlin ZHANG, A-Xing ZHU, Zhou SHI, Qiubing WANG, Baoyuan LIU, Xingchang ZHANG, Zhihua SHI, Jinling YANG, Feng LIU, Xiaodong SONG, Huayong WU, Rong ZENG. Progress and future prospect of soil geography[J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 57-65.
[1] |
安培浚, 张志强, 王立伟. 2016. 地球关键带的研究进展[J]. 地球科学进展, 31(12): 1228-1234.
doi: 10.11867/j.issn.1001-8166.2016.12.1228 |
[An P J, Zhang Z Q, Wang L W.2016. Review of Earth critical zone research[J]. Advances in Earth Science, 31(12): 1228-1234.]
doi: 10.11867/j.issn.1001-8166.2016.12.1228 |
|
[2] | 龚子同, 黄荣金, 张甘霖. 2014. 中国土壤地理[M]. 北京: 科学出版社. |
[Gong Z T, Huang R J, Zhang G L.2014. Chinese soil geography[M]. Beijing, China: Science Press.] | |
[3] | 龚子同, 张甘霖, 陈志诚, 等. 2007. 土壤发生与系统分类[M]. 北京: 科学出版社. |
[Gong Z T, Zhang G L, Chen Z C, et al.2007. Pedogenesis and soil taxonomy[M]. Beijing, China: Science Press.] | |
[4] | 杨建锋, 张翠光. 2014. 地球关键带: 地质环境研究的新框架[J]. 水文地质工程地质, 41(3): 98-104. |
[Yang J F, Zhang C G.2014. Earth's critical zone: A holistic framework for geo-environmental researches[J]. Hydrogeology & Engineering Geology, 41(3): 98-104.] | |
[5] |
张甘霖, 史学正, 龚子同. 2008. 中国土壤地理学发展的回顾与展望[J]. 土壤学报, 45(5): 792-801.
doi: 10.3321/j.issn:0564-3929.2008.05.005 |
[Zhang G L, Shi X Z, Gong Z T.2008. Retrospect and prospect of soil geography in China[J]. Acta Pedologica Sinica, 45(5): 792-801.]
doi: 10.3321/j.issn:0564-3929.2008.05.005 |
|
[6] |
张甘霖, 王秋兵, 张凤荣, 等. 2013. 中国土壤系统分类土族和土系划分标准[J]. 土壤学报, 50(4): 826-834.
doi: 10.11766/trxb201303180124 |
[Zhang G L, Wang Q B, Zhang F R, et al.2013. Criteria for establishment of soil family and soil series in Chinese Soil Taxonomy[J]. Acta Pedologica Sinica, 50(4): 826-834.]
doi: 10.11766/trxb201303180124 |
|
[7] | 赵其国. 2003. 发展与创新现代土壤科学[J]. 土壤学报, 40(3): 321-327. |
[Zhao Q G.2003. Development and innovation of modern soil science[J]. Acta Pedologica Sinica, 40(3): 321-327.] | |
[8] |
朱永官, 李刚, 张甘霖, 等. 2015. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 70(12): 1859-1869.
doi: 10.11821/dlxb201512001 |
[Zhu Y G, Li G, Zhang G L, et al.2015. Soil security: From Earth's critical zone to ecosystem services[J]. Acta Geographica Sinica, 70(12): 1859-1869.]
doi: 10.11821/dlxb201512001 |
|
[9] |
Adhikari K, Hartemink A E, Minasny B, et al.2014. Digital mapping of soil organic carbon contents and stocks in Denmark[J]. PLoS One, 9(8): e105519.
doi: 10.1371/journal.pone.0105519 pmid: 4138211 |
[10] |
Arvin L J, Riebe C S, Aciego S M, et al.2017. Global patterns of dust and bedrock nutrient supply to montane ecosystems[J]. Science Advances, 3(12): eaao1588.
doi: 10.1126/sciadv.aao1588 pmid: 29226246 |
[11] | Banwart S, Chorover J, Gaillardet J, et al.2013. Sustaining Earth's critical zone basic science and interdisciplinary solutions for global challenges[M]. Sheffield, UK: University of Sheffield. |
[12] |
Brantley S L.2008. Understanding soil time[J]. Science, 321: 1454-1455.
doi: 10.1126/science.1161132 |
[13] |
Brown D J, Shepherd K D, Walsh M G, et al.2006. Global soil characterization with VNIR diffuse reflectance spectroscopy[J]. Geoderma, 132(3-4): 273-290.
doi: 10.1016/j.geoderma.2005.04.025 |
[14] |
Carré F, McBratney A B, Mayr T, et al.2007. Digital soil assessments: Beyond DSM[J]. Geoderma, 142(1-2): 69-79.
doi: 10.1016/j.geoderma.2007.08.015 |
[15] |
Chen L M, Zhang G L, Effland W R.2011. Soil characteristic response times and pedogenic thresholds during the 1000-year evolution of a paddy soil chronosequence[J]. Soil Science Society of America Journal, 75(5): 1807-1820.
doi: 10.2136/sssaj2011.0006 |
[16] |
Clair J S, Moon S, Holbrook W S, et al.2015. Geophysical imaging reveals topographic stress control of bedrock weathering[J]. Science, 350: 534-538.
doi: 10.1126/science.aab2210 pmid: 26516279 |
[17] | De Gruijter J, Brus D J, Bierkens M F P, et al.2006. Sampling for natural resource monitoring[M]. New York: Springer. |
[18] | Demattê J A M.2016. From profile morphometrics to digital soil mapping[M]//Hartemink A E, Minasny B. Digital soil morphometrics. Cham, Switzerland: Springer: 383-400. |
[19] | FAO.2006. Guidelines for soil profile descriptions[R]. Rome, Italy: FAO. |
[20] |
Grunwald S J A.2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches[J]. Geoderma, 152(3-4): 195-207.
doi: 10.1016/0741-5214(87)90241-2 |
[21] |
Grunwald S J A, Thompson J A, Boettinger J L.2011. Digital soil mapping and modeling at continental scales: Finding solutions for global issues[J]. Soil Science Society of America Journal, 75(4): 1201-1213.
doi: 10.2136/sssaj2011.0025 |
[22] |
Guo S X, Zhu A X, Meng L K, et al.2016. Unification of soil feedback patterns under different evaporation conditions to improve soil differentiation over flat area[J]. International Journal of Applied Earth Observation and Geoinformation, 49: 126-137.
doi: 10.1016/j.jag.2016.02.002 |
[23] |
Hartemink A E, McBratney A.2008. A soil science renaissance[J]. Geoderma, 148(2): 123-129.
doi: 10.1016/j.geoderma.2008.10.006 |
[24] |
Hartemink A E, Minasny B.2014. Towards digital soil morphometrics[J]. Geoderma, 230-231: 305-317.
doi: 10.1016/j.geoderma.2014.03.008 |
[25] | Hartemink A E, Minasny B.2016. Developments in digital soil morphometrics[M]//Hartemink A E, Minasny B. Digital soil morphometrics. Cham, Switzerland: Springer: 425-433. |
[26] |
He Y, Li D C, Velde B, et al.2008. Clay minerals in a soil chronosequence derived from basalt on Hainan Island, China and its implication for pedogenesis[J]. Geoderma, 148(2): 206-212.
doi: 10.1016/j.geoderma.2008.10.007 |
[27] | Hempel J, Hoover D, Long R, et al.2016. The next generation of soil survey digital products[M]//Hartemink A E, Minasny B. Digital soil morphometrics. Cham, Switzerland: Springer: 353-363. |
[28] |
Hole F D, Hironaka M.1960. An experiment in ordination of some soil profiles[J]. Soil Science Society of America Journal, 24(4): 309-312.
doi: 10.2136/sssaj1960.03615995002400040028x |
[29] |
Huang J, Taghizadeh-Mehrjardi R, Minasny B, et al.2015. Modeling soil salinity along a hillslope in Iran by inversion of EM38 data[J]. Soil Science Society of America Journal, 79(4): 1142-1153.
doi: 10.2136/sssaj2014.11.0447 |
[30] |
Huang L M, Zhang G L, Yang J L.2013. Weathering and soil formation rates based on geochemical mass balances in a small forested watershed under acid precipitation in subtropical China[J]. Catena, 105: 11-20.
doi: 10.1016/j.catena.2013.01.002 |
[31] |
Hughes P, McBratney A B, Huang J Y, et al.2017. Comparisons between USDA Soil Taxonomy and the Australian Soil Classification System I: Data harmonization, calculation of taxonomic distance and inter-taxa variation[J]. Geoderma, 307: 198-209.
doi: 10.1016/j.geoderma.2017.08.009 |
[32] |
Huisman J A, Hubbard S S, Redman J D, et al.2003. Measuring soil water content with ground penetrating radar[J]. Vadose Zone Journal, 2(4): 476-491.
doi: 10.2136/vzj2003.0476 |
[33] |
Jin L, Ravella R, Ketchum B, et al.2010. Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory[J]. Geochimica et Cosmochimica Acta, 74(13): 3669-3691.
doi: 10.1016/j.gca.2010.03.036 |
[34] | Jones E J, McBratney A B.2016. What is digital soil morphometrics and where might it be going[M]//Hartemink A E, Minasny B. Digital soil morphometrics. Cham, Switzerland: Springer: 1-15. |
[35] |
Kerry R, Goovaerts P, Rawlins B G, et al.2012. Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale[J]. Geoderma, 170: 347-358.
doi: 10.1016/j.geoderma.2011.10.007 pmid: 4341910 |
[36] |
Li H Y, Shi Z, Webster R, et al.2013. Mapping the three-dimensional variation of soil salinity in a rice-paddy soil[J]. Geoderma, 195-196: 31-41.
doi: 10.1016/j.geoderma.2012.11.005 |
[37] |
Li J W, Zhang G L, Gong Z T.2013. Nd isotope evidence for dust accretion to a soil chronosequence in Hainan Island[J]. Catena, 101: 24-30.
doi: 10.1016/j.catena.2012.09.014 |
[38] |
Li Y, Zhu A X, Shi Z, et al.2016. Supplemental sampling for digital soil mapping based on prediction uncertainty from both the feature domain and the spatial domain[J]. Geoderma, 284: 73-84.
doi: 10.1016/j.geoderma.2016.08.013 |
[39] | Likens G E, Bormann F H.1995. Biogeochemistry of a forested ecosystem[M]. New York: Springer. |
[40] |
Liu F, Geng X Y, Zhu A X, et al.2012. Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS[J]. Geoderma, 171-172: 44-52.
doi: 10.1016/j.geoderma.2011.05.007 |
[41] |
Liu F, Geng X Y, Zhu A X, et al.2016. Soil polygon disaggregation through similarity-based prediction with legacy pedons[J]. Journal of Arid Land, 8(5): 760-772.
doi: 10.1007/s40333-016-0087-7 |
[42] |
Liu F, Zhang G L, Sun Y J, et al.2013. Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape[J]. Soil Science Society of America Journal, 77(4): 1241-1253.
doi: 10.2136/sssaj2012.0317 |
[43] |
Malone B P, McBratney A B, Minasny B, et al.2009. Mapping continuous depth functions of soil carbon storage and available water capacity[J]. Geoderma, 154(1-2): 138-152.
doi: 10.1016/j.geoderma.2009.10.007 |
[44] |
McBratney A B, Mendonça Santos M L, et al.2003. On digital soil mapping[J]. Geoderma, 117(1-2): 3-52.
doi: 10.1016/S0016-7061(03)00223-4 |
[45] |
Miller B A, Koszinski S, Wehrhan M, et al.2015. Impact of multi-scale predictor selection for modeling soil properties[J]. Geoderma, 239-240: 97-106.
doi: 10.1016/j.geoderma.2014.09.018 |
[46] |
Minasny B, McBratney A B.2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information[J]. Computers & Geosciences, 32(9): 1378-1388.
doi: 10.1016/j.cageo.2005.12.009 |
[47] |
Moore I D, Gessler P E, Nielsen G A, et al.1993. Soil attribute prediction using terrain analysis[J]. Soil Science Society of America Journal, 57(2): 443-452.
doi: 10.2136/sssaj1993.03615995005700020026x |
[48] |
Moran M S, Peters-Lidard C D, Watts J M, et al.2004. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models[J]. Canadian Journal of Remote Sensing, 30(5): 805-826.
doi: 10.5589/m04-043 |
[49] |
Mulder V L, de Bruin S, Schaepman M E, et al.2011. The use of remote sensing in soil and terrain mapping: A review[J]. Geoderma, 162(1-2): 1-19.
doi: 10.1016/j.geoderma.2010.12.018 |
[50] |
Muñoz J D, Kravchenko A.2011. Soil carbon mapping using on-the-go near infrared spectroscopy, topography and aerial photographs[J]. Geoderma, 166(1): 102-110.
doi: 10.1016/j.geoderma.2011.07.017 |
[51] |
Petropoulos G P, Ireland G, Barrett B.2015. Surface soil moisture retrievals from remote sensing: Current status, products & future trends[J]. Physics and Chemistry of the Earth, Parts A/B/C, 83-84: 36-56.
doi: 10.1016/j.pce.2015.02.009 |
[52] |
Riebe C S, Hahm W J, Brantley S L.2017. Controls on deep critical zone architecture: A historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 42(1): 128-156.
doi: 10.1002/esp.4052 |
[53] |
Sanchez P A, Ahamed S, Carré F, et al.2009. Digital soil map of the world[J]. Science, 325: 680-681.
doi: 10.1126/science.1175084 |
[54] |
Santos D Jr, Nunes L C, Trevizan L C, et al.2009. Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(10): 1073-1078.
doi: 10.1016/j.sab.2009.07.030 |
[55] | Shi J C, Guo P, Zhao T J, et al.2014. Soil Moisture downscaling algorithm for combining radar and radiometer observations for SMAP mission[C]//Proceedings of 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). Beijing, China: IEEE, doi: 10.1109/URSIGASS.2014.6929704. |
[56] | Soil Survey Division Staff.1993. Soil survey manual[M]. Washington, DC: United States Department of Agriculture. |
[57] |
Song X D, Brus D J, Liu F, et al.2016. Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China[J]. Geoderma, 261: 11-22.
doi: 10.1016/j.geoderma.2015.06.024 |
[58] |
Swobada-Colberg N G, Drever J I.1993. Mineral dissolution rates in plot-scale field and laboratory experiments[J]. Chemical Geology, 105(1-3): 51-69.
doi: 10.1016/0009-2541(93)90118-3 |
[59] |
Viscarra Rossel R A, Behrens T.2010. Using data mining to model and interpret soil diffuse reflectance spectra[J]. Geoderma, 158(1-2): 46-54.
doi: 10.1016/j.geoderma.2009.12.025 |
[60] |
Viscarra Rossel R A, Lobsey C R, Sharman C, et al.2017. Novel proximal sensing for monitoring soil organic C stocks and condition[J]. Environmental Science & Technology, 51(10): 5630-5641.
doi: 10.1021/acs.est.7b00889 pmid: 28414454 |
[61] |
Viscarra Rossel R A, Walvoort D J J, McBratney A B, et al.2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties[J]. Geoderma, 131(1-2): 59-75.
doi: 10.1016/j.geoderma.2005.03.007 |
[62] |
Wang Q B, Hartemink A E, Jiang Z D, et al.2017. Digital soil morphometrics of krotovinas in a deep Alfisol derived from loess in Shenyang, China[J]. Geoderma, 301: 11-18.
doi: 10.1016/j.geoderma.2017.04.010 |
[63] |
Yang J L, Zhang G L.2018. Silicon cycling by plant and its effects on soil Si translocation in a typical subtropical area[J]. Geoderma, 310: 89-98.
doi: 10.1016/j.geoderma.2017.08.014 |
[64] |
Yang J L, Zhang G L, Huang L M, et al.2013. Estimating soil acidification rate at watershed scale based on the stoichiometric relations between silicon and base cations[J]. Chemical Geology, 337-338: 30-37.
doi: 10.1016/j.chemgeo.2012.11.009 |
[65] |
Yang L, Jiao Y, Fahmy S, et al.2011. Updating conventional soil maps through digital soil mapping[J]. Soil Science Society of America Journal, 75(3): 1044-1053.
doi: 10.2136/sssaj2010.0002 |
[66] |
Yang R M, Yang F, Yang F, et al.2017. Pedogenic knowledge-aided modelling of soil inorganic carbon stocks in an alpine environment[J]. Science of the Total Environment, 599-600: 1445-1453.
doi: 10.1016/j.scitotenv.2017.05.055 pmid: 28535588 |
[67] |
Yang R M, Zhang G L, Liu F, et al.2016. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem[J]. Ecological Indicators, 60: 870-878.
doi: 10.1016/j.ecolind.2015.08.036 |
[68] |
Yin G F, Li A N, Zeng Y L, et al.2016. A cost-constrained sampling strategy in support of LAI product validation in mountainous areas[J]. Remote Sensing, 8(9): 704.
doi: 10.3390/rs8090704 |
[69] |
Zeng C Y, Zhu A X, Liu F, et al.2017. The impact of rainfall magnitude on the performance of digital soil mapping over low-relief areas using a land surface dynamic feedback method[J]. Ecological Indicators, 72: 297-309.
doi: 10.1016/j.ecolind.2016.08.023 |
[70] |
Zhang G L, Liu F, Song X D.2017. Recent progress and future prospect of digital soil mapping: A review[J]. Journal of Integrative Agriculture, 16(12): 2871-2885.
doi: 10.1016/S2095-3119(17)61762-3 |
[71] |
Zhao M S, Rossiter D G, Li D C, et al.2014. Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index[J]. Ecological Indicators, 39: 120-133.
doi: 10.1016/j.ecolind.2013.12.015 |
[72] |
Zhu A X, Band L E, Dutton B, et al.1996. Automated soil inference under fuzzy logic[J]. Ecological Modelling, 90(2): 123-145.
doi: 10.1016/0304-3800(95)00161-1 |
[73] |
Zuo S M, Yang J L, Huang L M, et al.2016. Assessment of plant-driven mineral weathering in an aggrading forested watershed in subtropical China[J]. Pedosphere, 26(6): 817-828.
doi: 10.1016/S1002-0160(15)60069-8 |
[1] | 熊琛然, 王礼茂, 屈秋实, 向宁, 王博. 地缘政治风险研究进展与展望[J]. 地理科学进展, 2020, 39(4): 695-706. |
[2] | 黄安, 许月卿, 卢龙辉, 刘超, 张益宾, 郝晋珉, 王惠. “生产-生活-生态”空间识别与优化研究进展[J]. 地理科学进展, 2020, 39(3): 503-518. |
[3] | 廖柳文, 高晓路. 人口老龄化对乡村发展影响研究进展与展望[J]. 地理科学进展, 2018, 37(5): 617-626. |
[4] | 李弘毅, 刘永学, 张思宇, 孙超, 孙佳琪. 地理信息技术支撑下的南海岛礁资源环境研究进展与展望[J]. 地理科学进展, 2018, 37(11): 1454-1462. |
[5] | 李富佳. 区际贸易隐含碳排放转移研究进展与展望[J]. 地理科学进展, 2018, 37(10): 1303-1313. |
[6] | 吴绍洪, 高江波, 邓浩宇, 刘路路, 潘韬. 气候变化风险及其定量评估方法[J]. 地理科学进展, 2018, 37(1): 28-35. |
[7] | 朱阿兴, 杨琳, 樊乃卿, 曾灿英, 张甘霖. 数字土壤制图研究综述与展望[J]. 地理科学进展, 2018, 37(1): 66-78. |
[8] | 史舟, 徐冬云, 滕洪芬, 胡月明, 潘贤章, 张甘霖. 土壤星地传感技术现状与发展趋势[J]. 地理科学进展, 2018, 37(1): 79-92. |
[9] | 贺艳华, 李民, 宾津佑, 周国华, 唐承丽. 近10年来中国城乡一体化空间组织研究进展与展望[J]. 地理科学进展, 2017, 36(2): 219-230. |
[10] | 王晓玥, 李双成. 基于多维视角的“城市病”诊断分析及其风险预估研究进展与发展趋势[J]. 地理科学进展, 2017, 36(2): 231-243. |
[11] | 张佰林, 蔡为民, 张凤荣, 姜广辉, 关小克. 中国农村居民点用地微观尺度研究进展及展望[J]. 地理科学进展, 2016, 35(9): 1049-1061. |
[12] | 刘超, 许月卿, 孙丕苓, 刘佳. 土地利用多功能性研究进展与展望[J]. 地理科学进展, 2016, 35(9): 1087-1099. |
[13] | 王成龙, 刘慧, 张梦天. 边界效应研究进展及展望[J]. 地理科学进展, 2016, 35(9): 1109-1118. |
[14] | 彭建, 陈云谦, 胡智超, 魏海. 城市腹地定量识别研究进展与展望[J]. 地理科学进展, 2016, 35(1): 14-24. |
[15] | 彭建, 马晶, 袁媛. 城市边缘带识别研究进展与展望[J]. 地理科学进展, 2014, 33(8): 1068-1077. |
|