地理科学进展 ›› 2017, Vol. 36 ›› Issue (8): 924-939.doi: 10.18306/dlkxjz.2017.08.002
洪长桥1,3,4(), 金晓斌2,3,4,*(
), 陈昌春1, 王慎敏1, 杨绪红2, 项晓敏2
出版日期:
2017-08-31
发布日期:
2017-08-28
通讯作者:
金晓斌
作者简介:
作者简介:洪长桥(1993-),男,湖南衡阳人,硕士研究生,主要从事资源遥感研究,E-mail:
基金资助:
Changqiao HONG1,3,4(), Xiaobin JIN2,3,4,*(
), Changchun CHEN1, Shenmin WANG1, Xuhong YANG2, Xiaomin XIANG2
Online:
2017-08-31
Published:
2017-08-28
Contact:
Xiaobin JIN
摘要:
净初级生产力(NPP)是衡量碳循环、指导土地利用、评估生态安全、指示环境变化、反映粮食安全等的重要参量,其估算受模型构建机理和生态系统关键地表参数输入的影响。近年来,随着遥感数据的不断丰富和遥感处理技术的快速发展,集成遥感数据的NPP估算模型相较于仅采用气候、土壤等传统观测数据的非遥感模型,在分析时空异质性等方面的优势日益凸显。本文基于Web of Science和CNKI两大数据库,采用文献统计分析方法,系统回顾NPP研究概况及国内外集成遥感数据的NPP估算模型的近期进展;并将集成遥感数据进行NPP估算的模型分为统计模型、光能利用率模型、过程模型及耦合模型四类;重点阐述了各类遥感估算模型的机理、差异性、适宜性及局限性;最后,在分析NPP遥感估算面临困境和科学挑战的基础上,从机理与影响因素、数据基础、参数反演、时空尺度拓展、软硬件支撑等方面对未来研究进行了展望。
洪长桥, 金晓斌, 陈昌春, 王慎敏, 杨绪红, 项晓敏. 集成遥感数据的陆地净初级生产力估算模型研究综述[J]. 地理科学进展, 2017, 36(8): 924-939.
Changqiao HONG, Xiaobin JIN, Changchun CHEN, Shenmin WANG, Xuhong YANG, Xiaomin XIANG. Overview on estimation models of land net primary productivity integrating remote sensing data[J]. PROGRESS IN GEOGRAPHY, 2017, 36(8): 924-939.
表1
集成遥感数据的光能利用率模型应用案例"
模型 | 表达形式 | 范围/土地覆盖类型 | ?*来源(取值) | 参考文献 |
---|---|---|---|---|
CASA | APAR×?*(N)×f(T)×f(W) | 湖南省/5大类19小类 | 文献(0.39~0.99) | 陈晓玲等, 2016 |
SEBAL | APAR×?*(N)×f(T)×f(W) | 河北省2县/农作物 | — | 苏伟等, 2014 |
NNPP | APAR×?*(N)×min[f(T), f(W)] | 青海省/6类草地 | 文献、实测反演 | 卫亚星等, 2012 |
AgI-LUE | APAR×?(N) | 美国2州/玉米、大豆 | 统计数据反演 | Bandaru et al, 2013 |
PEM | APAR×?*(N)×f(Ta, Ts) | 美国2地/城郊草坪 | 涡度通量观测 | Wu et al, 2012 |
Modis-derived NPP | APAR×?*(N)×f(T)×f(W) | 中国2站点/林地 | 文献(55.2α(C3);2.76(C4)) | Chen et al, 2008 |
GPP/NPP | APAR×?*(G)×f(T)×f(W) | 黑河流域/5类植被 | 文献 | Gao S et al, 2012 |
C-Fix | APAR×?*(G)×f(T)×f(CO2) | 中国/陆地植被 | 1.1 | 陈斌等, 2007 |
GLO-PEM | APAR×?*(G)×f(T)×f(W)×f(VPD) | 中国西南地区/陆地植被 | 55.2α(C3);2.76(C4) | 赵志平等, 2015 |
VPM | APAR×?*(G)×f(T)×f(W)×f(P) | 中国/耕地 | 涡度通量观测 | 冀咏赞等, 2015 |
Beams | APAR×?*(G)×(Pactual/Pmax) | 全球/陆地植被 | 0~1 | Sasai et al, 2005 |
TL-LUE | (APARmsu×?msu*(G)+APARmsh×?msh*(G))×f(T)× f(VPD) | 中国/5类植被 | 实测反演 | He et al, 2013 |
TL-LUEn | [(APARmsu×?msu*(G)×β)/(APARmsu×?msu*(G)+β)×LAImsu+(APARmsh×?msh*(G)×β)/(APARmsh×?msh*(G)+β)×LAImsh]×f(T)×f(VPD) | 美国18站点、加拿大 4站点/4类植被 | — | Wang F M et al, 2014 |
3PG | APAR×?*(G)×f(T)×f(VPD)×f(CO2)×f(F)× f(θs)×f(N) | 俄勒冈州西部/冷杉 | — | McAdam, 2015 |
EC-LUE | APAR×?*(G)×min[f(T), f(W)] | 全球36站点/C3/C4作物 | 2.14 | Yuan et al, 2016 |
TEC | APAR×?*(G)×f(T)×f(W) | 美国18站点/3类植被 | 文献(1.8(C3);2.76(C4) | Yan et al, 2015 |
GEO-LUE | APAR×?*(G)×f(T)×f(W)×f(VPD) | 中国/陆地植被 | — | Gao Z Q et al, 2012 |
TURC | APAR×?(G) | 全球/陆地植被 | 1.21 | Ruimy et al, 1996 |
CFLUX | APAR×?*(G)×f(T)×min[f(W)×f(VPD)]×f(SA) | 北美/8类植被 | 实测反演(0.7~4.9) | King et al, 2011 |
表2
集成遥感数据的过程模型应用案例"
模型 | 动态模拟 | 模型主要结构或表达 | 范围/土地覆盖类型 | 参考文献 | |||
---|---|---|---|---|---|---|---|
碳 | 氮 | 水 | 能量 | ||||
TEM | √ | √ | WBM水分平衡模型、物候模型、植物摄取N模型 | 全球/10类功能型植被 | Liao et al, 2015 | ||
BEPS | √ | 气孔导度模型(Jarvis经验模型)、叶片瞬时光合作用模型(Farquhar模型)、两叶模型 | 南京/9类土地覆盖 | Zhou et al, 2015 | |||
Biome-BGC | √ | √ | √ | √ | 包括初始化文件、气象数据文件及包含44个生理生态参数的文件* | 加拿大/半干旱草地 | He et al, 2015 |
InTEC | √ | √ | 叶片瞬时光合作用模型(Farquhar模型)、CENTURY土壤碳和氮循环模型、净氮矿化模型、age-NPP关系模型、土壤三维水文模型 | 东北地区/森林 | 李明泽等, 2015 | ||
EPPML | √ | √ | 气孔导度模型与气体传输模型相结合、叶片瞬时光合作用模型(Farquhar模型)、两叶模型 | 长白山自然保护区/9类植被 | 张娜等, 2003 | ||
SiB2 | √ | √ | √ | 空气动力学转移、水力学扩散、重力引流、一维能量平衡、转移模型(冠层结构为单叶,包含融雪模块) | 位山引黄灌区/小麦、玉米 | 雷慧闽等, 2012 | |
MOD-Sim-CYCLE | √ | 叶片光合作用速率采用Michaelis型函数、气孔导度模型使用Ball修正公式、冠层尺度过程是基于叶片光合作用速率、光合作用量子通量密度,在日长、叶面积指数上的积分 | 全球/7大类31小类 | Hazarika et al, 2005 |
1 | 蔡晓明. 2000. 生态系统生态学[M]. 北京: 科学出版社. |
[Cai X M, , et al.2015. he ecology of ecosystem[J]. Beijing, China: Science Press] | |
2 |
常学礼, 吕世海, 冯朝阳, 等. 2015. 地形对草甸草原植被生产力分布格局的影响[J]. 生态学报, 35(10): 3339-3348.
doi: 10.5846/stxb201306201748 |
[Chang X L, Lü S H, Feng Z Y, et al.2015. Impact of topography on the spatial distribution pattern of net primary productivity in a meadow[J]. Acta Ecologica Sinica, 35(10): 3339-3348.]
doi: 10.5846/stxb201306201748 |
|
3 | 陈斌, 王绍强, 刘荣高, 等. 2007. 中国陆地生态系统NPP模拟及空间格局分析[J]. 资源科学, 29(6): 45-53. |
[Chen B, Wang S Q, Liu R G, et al.2007. Study on modeling and spatial pattern of net primary production in China's terrestrial ecosystem[J]. Resources Science, 29(6): 45-53.] | |
4 | 陈吉泉, 阳树英. 2014. 陆地生态学研究方法[M]. 北京: 高等教育出版社. [Chen J Q, Yang S Y. 2014. Ecological methods of terrestrial ecosystem[M]. Beijing, China: Higher Education Press.] |
5 |
陈晓玲, 曾永年. 2016. 亚热带山地丘陵区植被NPP时空变化及其与气候因子的关系: 以湖南省为例[J]. 地理学报, 71(1): 35-48.
doi: 10.11821/dlxb201601003 |
[Chen X L, Zeng Y N.2016. Spatial and temporal variability of the net primary production (NPP) and its relationship with climate factors in subtropical mountainous and hilly regions of China: A case study in Hunan Province[J]. Acta Geographica Sinica, 71(1): 35-48.]
doi: 10.11821/dlxb201601003 |
|
6 |
池源, 石洪华, 王晓丽, 等. 2015. 庙岛群岛南五岛生态系统净初级生产力空间分布及其影响因子[J]. 生态学报, 35(24): 8094-8106.
doi: 10.5846/stxb201405040880 |
[Chi Y, Shi H H, Wang X L, et al.2015. The spatial distribution and impact factors of net primary productivity in the island ecosystem of five southern islands of Miaodao Archipelago[J]. Acta Ecologica Sinica, 35(24): 8094-8106.]
doi: 10.5846/stxb201405040880 |
|
7 | 郭群, 胡中民, 李轩然, 等. 2013. 降水时间对内蒙古温带草原地上净初级生产力的影响[J]. 生态学报, 33(15): 4808-4817. |
[Guo Q, Hu Z M, Li X R, et al.2013. Effects of precipitation timing on aboveground net primary productivity in Inner Mongolia temperate steppe[J]. Acta Ecologica Sinica, 33(15): 4808-4817.] | |
8 | 侯湖平, 张绍良, 丁忠义, 等. 2012. 基于植被净初级生产力的煤矿区生态损失测度研究[J]. 煤炭学报, 37(3): 445-451. |
[Hou H P, Zhang S L, Ding Z Y, et al.2012. Study on the measurement of ecological loss based on the net primary productivity in coal mines[J]. Journal of China Coal Society, 37(3): 445-451.] | |
9 | 胡波, 孙睿, 陈永俊, 等. 2011. 遥感数据结合Biome-BGC模型估算黄淮海地区生态系统生产力[J]. 自然资源学报, 26(12): 2061-2071. |
[Hu B, Sun R, Chen Y J, et al.2011. Estimation of the net ecosystem productivity in Huang-Huai-Hai region combining with Biome-BGC model and remote sensing data[J]. Journal of Natural Resources, 26(12): 2061-2071.] | |
10 | 冀咏赞, 闫慧敏, 刘纪远, 等. 2015. 基于MODIS数据的中国耕地高中低产田空间分布格局[J]. 地理学报, 70(5): 766-778. |
[Ji Y Z, Yan H M, Liu J Y, et al.2015. A MODIS data derived spatial distribution of high-, medium- and low-yield cropland in China[J]. Acta Geographica Sinica, 70(5): 766-778.] | |
11 | 蒋蕊竹, 李秀启, 朱永安, 等. 2011. 基于MODIS黄河三角洲湿地NPP与NDVI相关性的时空变化特征[J]. 生态学报, 31(22): 6708-6716. |
[Jiang R Z, Li X Q, Zhu Y A, et al.2011. Spatial-temporal variation of NPP and NDVI correlation in wetland of Yellow River Delta based on MODIS data[J]. Acta Ecologica Sinica, 31(22): 6708-6716.] | |
12 | 雷慧闽, 杨大文, 蔡建峰, 等. 2012. 1984~2006年黄河下游大型灌区碳平衡长期变化[J]. 中国科学: 地球科学, 42(11): 1754-1766. |
[Lei H M, Yang D W, Cai J F, et al.2013. Long-term variability of the carbon balance in a large irrigated area along the lower Yellow River from 1984 to 2006[J]. Science China: Earth Sciences, 56(4): 671-683.] | |
13 |
李明泽, 王斌, 范文义, 等. 2015. 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究[J]. 植物生态学报, 39(4): 322-332.
doi: 10.17521/cjpe.2015.0031 |
[Li M Z, Wang B, Fan W Y, et al.2015. Simulation of forest net primary production and the effects of fire disturbance in Northeast China[J]. Chinese Journal of Plant Ecology, 39(4): 322-332.]
doi: 10.17521/cjpe.2015.0031 |
|
14 |
李庆, 王洪涛, 刘文, 等. 2013. 以HJ-1卫星遥感数据估算高寒草地植被净第一性生产力的潜力评估: 以若尔盖草地为例[J]. 中国沙漠, 33(4): 1250-1255.
doi: 10.7522/j.issn.1000-694X.2013.00176 |
[Li Q, Wang H T, Liu W, et al.2013. Evaluation on net primary productivity of alpine meadow based on HJ-1 satellite data: A case study in the Zoige grassland[J]. Journal of Desert Research, 33(4): 1250-1255.]
doi: 10.7522/j.issn.1000-694X.2013.00176 |
|
15 |
刘洋, 刘荣高, 陈镜明, 等. 2013. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 15(5): 734-743.
doi: 10.3724/SP.J.1047.2013.00734 |
[Liu Y, Liu R G, Chen J M, et al.2013. Current status and perspectives of leaf area index retrieval from optical remote sensing data[J]. Journal of Geo-Information Science, 15(5): 734-743.]
doi: 10.3724/SP.J.1047.2013.00734 |
|
16 | 刘玉安, 黄波, 易成功, 等. 2013. 基于地形校正的植被净初级生产力遥感模拟及分析[J]. 农业工程学报, 29(13): 130-141. |
[Liu Y A, Huang B, Yi C G, et al.2013. Simulation by remote sensing and analysis of net primary productivity of vegetation based on topographical correction[J]. Transactions of the Chinese Society of Agricultural Engineering, 29(13): 130-141.] | |
17 |
卢伟, 范文义, 田甜. 2016a. 不同步长尺度下BEPS碳循环模型的协同应用[J]. 应用生态学报, 27(9): 2771-2778.
doi: 10.13287/j.1001-9332.201609.017 |
[Lu W, Fan W Y, Tian T.2016a. Collaborative application of BEPS at different time steps[J]. Chinese Journal of Applied Ecology, 27(9): 2771-2778.]
doi: 10.13287/j.1001-9332.201609.017 |
|
18 |
卢伟, 范文义, 田甜. 2016b. 基于东北温带落叶阔叶林通量数据的BEPS模型参数优化[J]. 应用生态学报, 27(5): 1353-1358.
doi: 10.13287/j.1001-9332.201605.001 |
[Lu W, Fan W Y, Tian T.2016b. Parameter optimization of BEPS model based on the flux data of the temperate deciduous broad-leaved forest in Northeast China[J]. Chinese Journal of Applied Ecology, 27(5): 1353-1358.]
doi: 10.13287/j.1001-9332.201605.001 |
|
19 | 牛忠恩, 闫慧敏, 黄玫, 等. 2016. 基于MODIS-OLI遥感数据融合技术的农田生产力估算[J]. 自然资源学报, 31(5): 875-885. |
[Niu Z E, Yan H M, Huang M, et al.2016. Agricultural productivity estimation with MODIS-OLI fusion data[J]. Journal of Natural Resources, 31(5): 875-885.] | |
20 |
史舟, 梁宗正, 杨媛媛, 等. 2015. 农业遥感研究现状与展望[J]. 农业机械学报, 46(2): 247-260.
doi: 10.6041/j.issn.1000-1298.2015.02.037 |
[Shi Z, Liang Z Z, Yang Y Y, et al.2015. Status and prospect of agricultural remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 46(2): 247-260.]
doi: 10.6041/j.issn.1000-1298.2015.02.037 |
|
21 | 苏伟, 刘睿, 孙中平, 等. 2014. 基于SEBAL模型的农作物NPP反演[J]. 农业机械学报, 45(11): 272-279. |
[Su W, Liu R, Sun Z P, et al.2014. Crop NPP inversion using surface energy balance algorithm for land model[J]. Transactions of the Chinese Society for Agricultural Machinery, 45(11): 272-279.] | |
22 |
孙成明, 刘涛, 田婷, 等. 2013. 基于MODIS的南方草地NPP遥感估算与应用[J]. 草业学报, 22(5): 11-17.
doi: 10.11686/cyxb20130502 |
[Sun C M, Liu T, Tian T, et al.2013. Remote sensing estimation and application of grassland NPP based on MODIS data in southern China[J]. Acta Prataculturae Sinica, 22(5): 11-17.]
doi: 10.11686/cyxb20130502 |
|
23 |
孙成明, 孙政国, 刘涛, 等. 2015. 基于MODIS的中国草地NPP综合估算模型[J]. 生态学报, 35(4): 1079-1085.
doi: 10.5846/stxb201305030909 |
[Sun C M, Sun Z G, Liu T, et al.2015. Comprehensive estimation model of grassland NPP based on MODIS in China[J]. Acta Ecologica Sinica, 35(4): 1079-1085.]
doi: 10.5846/stxb201305030909 |
|
24 | 陶波, 葛全胜, 李克让, 等. 2001. 陆地生态系统碳循环研究进展[J]. 地理研究, 20(5): 564-575. |
[Tao B, Ge Q S, Li K R, et al.2001. Progress in the studies on carbon cycle in terrestrial ecosystem[J]. Geographical Research, 20(5): 564-575.] | |
25 |
王军邦, 刘纪远, 邵全琴, 等. 2009. 基于遥感—过程耦合模型的1988-2004年青海三江源区净初级生产力模拟[J]. 植物生态学报, 33(2): 254-269.
doi: 10.3773/j.issn.1005-264x.2009.02.003 |
[Wang J B, Liu J Y, Shao Q Q, et al.2009. Spatial-temporal patterns of net primary productivity for 1988-2004 based on GLOPEM-CEVSA model in the "Three-River Headwaters" region of Qinghai Province, China[J]. Chinese Journal of Plant Ecology, 33(2): 254-269.]
doi: 10.3773/j.issn.1005-264x.2009.02.003 |
|
26 |
王苗苗, 周蕾, 王绍强, 等. 2016. 空间分辨率对总初级生产力模拟结果差异的影响[J]. 地理研究, 35(4): 617-626.
doi: 10.11821/dlyj201604002 |
[Wang M M, Zhou L, Wang S Q, et al.2016. An analysis of the gross primary productivity simulation difference resulting from the spatial resolution[J]. Geographical Research, 35(4): 617-626.]
doi: 10.11821/dlyj201604002 |
|
27 |
王培娟, 谢东辉, 张佳华, 等. 2009. BEPS模型在华北平原冬小麦估产中的应用[J]. 农业工程学报, 25(10): 148-153.
doi: 10.3969/j.issn.1002-6819.2009.10.027 |
[Wang P J, Xie D H, Zhang J H, et al.2009. Application of BEPS model in estimating winter wheat yield in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 25(10): 148-153.]
doi: 10.3969/j.issn.1002-6819.2009.10.027 |
|
28 | 王宗明, 国志兴, 宋开山, 等. 2009. 2000~2005年三江平原土地利用/覆被变化对植被净初级生产力的影响研究[J]. 自然资源学报, 24(1): 136-146. |
[Wang Z M, Guo Z X, Song K S, et al.2009. Effects of land use/cover change on net primary productivity of Sanjiang Plain, during 2000-2005[J]. Journal of Natural Resources, 24(1): 136-146.] | |
29 | 卫亚星, 王莉雯, 石迎春, 等. 2012. 青海省草地资源净初级生产力遥感监测[J]. 地理科学, 32(5): 621-627. |
[Wei Y X, Wang L W, Shi Y C, et al.2012. Net primary productivity of grassland resources monitoring based on remote sensing data in Qinghai Province[J]. Scientia Geographica Sinica, 32(5): 621-627.] | |
30 | 肖乾广, 陈维英, 盛永伟, 等. 1996. 用NOAA气象卫星的AVHRR遥感资料估算中国的净第一性生产力[J]. 植物学报, 38(1): 35-39. |
[Xiao Q G, Chen W Y, Sheng Y W, et al.1996. Estimating the net primary productivity in China using meteorological satellite data[J]. Acta Botanica Sinica, 38(1): 35-39.] | |
31 | 张方敏, 居为民, 陈镜明, 等. 2012. [J]. 应用生态学报, 23(2): 307-318. |
[Zhang F M, Ju W M, Chen J M, et al.2012. Characteristics of terrestrial ecosystem primary productivity in East Asia based on remote sensing and process-based model[J]. Chinese Journal of Applied Ecology, 23(2): 307-318.] | |
32 |
张娜, 于贵瑞, 于振良, 等. 2003. 基于3S的自然植被光能利用率的时空分布特征的模拟[J]. 植物生态学报, 27(3): 325-336.
doi: 10.17521/cjpe.2003.0049 |
[Zhang N, Yu G R, Yu Z L, et al.2003. Simulation of temporal and spatial distribution of natural vegetation light utilization efficiency based on 3S[J]. Acta Phytoecologica Sinica, 27(3): 325-336.]
doi: 10.17521/cjpe.2003.0049 |
|
33 |
赵志平, 吴晓莆, 李果, 等. 2015. 2009-2011年我国西南地区旱灾程度及其对植被净初级生产力的影响[J]. 生态学报, 35(2): 350-360.
doi: 10.5846/stxb201304040604 |
[Zhao Z P, Wu X P, Li G, et al.2015. Drought in Southwestern China and its impact on the net primary productivity of vegetation from 2009-2011[J]. Acta Ecologica Sinica, 35(2): 350-360.]
doi: 10.5846/stxb201304040604 |
|
34 |
郑元润, 周广胜. 2000. 基于NDVI的中国天然森林植被净第一性生产力模型[J]. 植物生态学报, 24(1): 9-12.
doi: 10.1007/s11769-000-0028-3 |
[Zheng Y R, Zhou G S.2000. A forest vegetation NPP model based on NDVI[J]. Acta Phytoecologica Sinica, 24(1): 9-12.]
doi: 10.1007/s11769-000-0028-3 |
|
35 |
周才平, 欧阳华, 王勤学, 等. 2004. 青藏高原主要生态系统净初级生产力的估算[J]. 地理学报, 59(1): 74-79.
doi: 10.3321/j.issn:0375-5444.2004.01.009 |
[Zhou C P, Ouyang H, Wang Q X, et al.2004. Estimation of net primary productivity in Tibetan Plateau[J]. Acta Geographica Sinica, 59(1): 74-79.]
doi: 10.3321/j.issn:0375-5444.2004.01.009 |
|
36 | 宗玮, 林文鹏, 周云轩, 等. 2011. 基于遥感的上海崇明东滩湿地典型植被净初级生产力估算[J]. 长江流域资源与环境, 20(11): 1355-1360. |
[Zong W, Lin W P, Zhou Y X, et al.2011. Estimation of typical wetland vegetation NPP in Shanghai Chongming Dongtan based on remote sensing[J]. Resources and Environment in the Yangtze Basin, 20(11): 1355-1360.] | |
37 |
An N, Prince K P, Blair J M.2013. Estimating above-ground net primary productivity of the tallgrass prairie ecosystem of the Central Great Plains using AVHRR NDVI[J]. International Journal of Remote Sensing, 34(11): 3717-3735.
doi: 10.1080/01431161.2012.757376 |
38 |
Bandaru V, West T O, Ricciuto D M, et al.2013. Estimating crop net primary production using national inventory data and MODIS-derived parameters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 80(2): 61-71.
doi: 10.1016/j.isprsjprs.2013.03.005 |
39 |
Bao G, Bao Y H, Qin Z H, et al.2016. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model[J]. International Journal of Applied Earth Observation and Geoinformation, 46: 84-93.
doi: 10.1016/j.jag.2015.12.001 |
40 |
Blanco L J, Paruelo J M, Oesterheld M, et al.2016. Spatial and temporal patterns of herbaceous primary production in semi-arid shrublands: A remote sensing approach[J]. Journal of Vegetation Science, 27(4): 716-727.
doi: 10.1111/jvs.12398 |
41 |
Chen L F, Gao Y H, Li L, et al.2008. Forest NPP estimation based on MODIS data under cloudless condition[J]. Science in China: Earth Sciences, 51(3): 331-338.
doi: 10.1007/s11430-008-0013-8 |
42 |
Chen M, Zhuang Q L, Cook D R, et al.2011. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data[J]. Biogeosciences, 8(9): 2665-2688.
doi: 10.5194/bgd-8-2721-2011 |
43 |
Cook B D, Bolstad P V, Næsset E, et al.2009. Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations[J]. Remote Sensing of Environment, 113(11): 2366-2379.
doi: 10.1016/j.rse.2009.06.017 |
44 |
Damm A, Guanter L, Paul-Limoges E, et al.2015. Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches[J]. Remote Sensing of Environment, 166: 91-105.
doi: 10.1016/j.rse.2015.06.004 |
45 |
Dong J W, Xiao X M, Wagle P, et al.2015. Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought[J]. Remote Sensing of Environment, 162: 154-168.
doi: 10.1016/j.rse.2015.02.022 |
46 |
Gao J X, Chen Y M, Lü S H, et al.2012. A ground spectral model for estimating biomass at the peak of the growing season in Hulunbeier grassland, Inner Mongolia, China[J]. International Journal of Remote Sensing, 33(13): 4029-4043.
doi: 10.1080/01431161.2011.639401 |
47 | Gao S, Niu Z, Wu M Q, et al.2012. Estimating terrestrial vegetation primary productivity using satellite SAR data[C]//2012 IEEE International Geoscience and Remote Sensing Symposium Munich, Germany: IEEE: 6467-6470. |
48 | Gao Z Q, Gao W, Cao X M, et al.2012, 10. The analysis of net primary productivity in China based on GEOLUE model[C]// Proc. SPIE 8513, Remote Sensing and Modeling of Ecosystems for Sustainability IX, 8513OR. San Diego, CA: SPIE. |
49 |
Hadley E B, Buccos R P.1967. Plant community composition and net primary production within a native eastern north Dakota Prairie[J]. American Midland Naturalist, 77(1): 116-127.
doi: 10.2307/2423431 |
50 |
Hazarika M K, Yasuoka Y, Ito A, et al.2005. Estimation of net primary productivity by integrating remote sensing data with an ecosystem model[J]. Remote Sensing of Environment, 94(3): 298-310.
doi: 10.1016/j.rse.2004.10.004 |
51 |
He M Z, Ju W M, Zhou Y L, et al.2013. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity[J]. Agricultural and Forest Meteorology, 173: 28-39.
doi: 10.1016/j.agrformet.2013.01.003 |
52 | He Y H, Ma Z B, Guo X L.2015. Grassland productivity simulation: Integrating remote sensing and an ecosystem process model[M]// Li J, Yang X J. Monitoring and modeling of global changes: A Geomatics Perspective. Netherlands: Springer: 155-169. |
53 |
Houborg R, McCabe M F, Cescatti A, et al.2015. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems[J]. International Journal of Applied Earth Observation and Geoinformation, 43: 160-176.
doi: 10.1016/j.jag.2015.03.016 |
54 |
Irisarri J G N, Oesterheld M, Paruelo J M, et al.2012. Patterns and controls of above-ground net primary production in meadows of Patagonia: A remote sensing approach[J]. Journal of Vegetation Science, 23(1): 114-126.
doi: 10.1111/j.1654-1103.2011.01326.x |
55 |
King D A, Turner D P, Ritts W D.2011. Parameterization of a diagnostic carbon cycle model for continental scale application[J]. Remote Sensing of Environment, 115(7): 1653-1664.
doi: 10.1016/j.rse.2011.02.024 |
56 |
Liao C, Zhuang Q L.2015. Reduction of global plant production due to droughts from 2001 to 2010: An analysis with a process-based global terrestrial ecosystem model[J]. Earth Interactions, 19(16): 1-21.
doi: 10.1175/EI-D-14-0030.1 |
57 | Lieth H, Whittaker R H.1975. Primary productivity of the biosphere[M]. Berlin, Germany: Springer-Verlag. |
58 |
Lo Seen Chong D, Mougin E, Gastellu-Etchegorry J P.1993. Relating the global vegetation index to net primary productivity and actual evapotranspiration over Africa[J]. International Journal of Remote Sensing, 14(8): 1517-1546.
doi: 10.1080/01431169308953984 |
59 |
Mao D H, Wang Z M, Li L, et al.2014. Spatiotemporal dynamics of grassland aboveground net primary productivity and its association with climatic pattern and changes in Northern China[J]. Ecological Indicators, 41: 40-48.
doi: 10.1016/j.ecolind.2014.01.020 |
60 | McAdam E.2015. Using remote sensing and process-based growth modeling to predict forest productivity across Western Oregon[D]. Corvallis Oregon, Russia: Oregon State University. |
61 |
Monteith J L.1972. Solar radiation and productivity in tropical ecosystems[J]. Journal of Applied Ecology, 9(3): 747-766.
doi: 10.2307/2401901 |
62 | Monteith J L, Moss C J.1977. Climate and the efficiency of crop production in Britain [and discussion][J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 281: 277-294. |
63 | Paruelo J M, Epstein H E, Lauenroth W K, et al.1997. ANPP estimates from NDVI for the central grassland region of the United States[J]. Ecology, 78(3): 953-958. |
64 |
Petrosillo I, Semeraro T, Zaccarelli N, et al.2013. The possible combined effects of land-use changes and climate conditions on the spatial-temporal patterns of primary production in a natural protected area[J]. Ecological Indicators, 29: 367-375.
doi: 10.1016/j.ecolind.2013.01.025 |
65 |
Roces-Díaz J V, Díaz-Varela R A, Álvarez-Álvarez P, et al.2015. A multiscale analysis of ecosystem services supply in the NW Iberian Peninsula from a functional perspective[J]. Ecological Indicators, 50: 24-34.
doi: 10.1016/j.ecolind.2014.10.027 |
66 |
Ruimy A, Dedieu G, Saugier B.1996. TURC: A diagnostic model of continental gross primary productivity and net primary productivity[J]. Global Biogeochemical Cycles, 10(2): 269-285.
doi: 10.1029/96GB00349 |
67 | Ruimy A, Saugier B, Dedieu G.1994. Methodology for the estimation of terrestrial net primary production from remotely sensed data[J]. Journal of Geophysical Research, 99(D3): 5263-5283. |
68 |
Sasai T, Ichii K, Yamaguchi Y, et al.2005. Simulating terrestrial carbon fluxes using the new biosphere model "biosphere model integrating eco-physiological and mechanistic approaches using satellite data" (BEAMS)[J]. Journal of Geophysical Research: Biogeosciences, 110(G2): G02014.
doi: 10.1029/2005JG000045 |
69 |
Sellers P J, Los S O, Tucker C J, et al.1996. A revised land surface parameterization (SiB2) for atmospheric GCMS. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data[J]. Journal of Climate, 9(4): 706-737.
doi: 10.1175/1520-0442(1996)0092.0.CO;2 |
70 |
Sjöström M, Zhao M, Archibald S, et al.2013. Evaluation of MODIS gross primary productivity for Africa using eddy covariance data[J]. Remote Sensing of Environment, 131: 275-286.
doi: 10.1016/j.rse.2012.12.023 |
71 |
Soudani K, Hmimina G, Dufrêne E, et al.2014. Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests[J]. Remote Sensing of Environment, 144: 73-84.
doi: 10.1016/j.rse.2014.01.017 |
72 |
Wang F M, Chen J M, Gonsamo A, et al.2014. A two-leaf rectangular hyperbolic model for estimating GPP across vegetation types and climate conditions[J]. Journal of Geophysical Research: Biogeosciences, 119(7): 1385-1398.
doi: 10.1002/2013JG002596 |
73 |
Wang J B, Liu J Y, Cao M K, et al.2011. Modelling carbon fluxes of different forests by coupling a remote-sensing model with an ecosystem process model[J]. International Journal of Remote Sensing, 32(21): 6539-6567.
doi: 10.1080/01431161.2010.512933 |
74 |
Wang P J, Xie D H, Zhou Y Y, et al.2014. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China[J]. Environmental Earth Sciences, 71(2): 647-658.
doi: 10.1007/s12665-013-2462-4 |
75 |
Whittaker R H.1961. Estimation of net primary production of forest and shrub communities[J]. Ecology, 42(1): 177-180.
doi: 10.2307/1933283 |
76 |
Wu J D, Bauer M E.2012. Estimating net primary production of Turfgrass in an Urban-Suburban landscape with QuickBird imagery[J]. Remote Sensing, 4(4): 849-866.
doi: 10.3390/rs4040849 |
77 |
Wu X C, Ju W M, Zhou Y L, et al.2015. Performance of linear and nonlinear two-leaf light use efficiency models at different temporal scales[J]. Remote Sensing, 7(3): 2238-2278.
doi: 10.3390/rs70302238 |
78 |
Xin Q C, Broich M, Suyker A E, et al.2015. Multi-scale evaluation of light use efficiency in MODIS gross primary productivity for croplands in the Midwestern United States[J]. Agricultural and Forest Meteorology, 201: 111-119.
doi: 10.1016/j.agrformet.2014.11.004 |
79 |
Xue W, Lindner S, Nay-Htoon B, et al.2016. Nutritional and developmental influences on components of rice crop light use efficiency[J]. Agricultural and Forest Meteorology, 223: 1-16.
doi: 10.1016/j.agrformet.2016.03.018 |
80 |
Yan H, Wang S Q, Billesbach D, et al.2015. Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants[J]. Ecological Modelling, 297: 42-59.
doi: 10.1016/j.ecolmodel.2014.11.002 |
81 |
Yin Y Y, Tang Q H, Wang L X, et al.2016. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China[J]. Scientific Reports, 6: 20905.
doi: 10.1038/srep20905 pmid: 4751438 |
82 |
Yu B, Chen F.2016. The global impact factors of net primary production in different land cover types from 2005 to 2011[J]. Springerplus, 5(1): 1235.
doi: 10.1186/s40064-016-2910-1 pmid: 4971002 |
83 |
Yuan W P, Cai W W, Xia J Z, et al.2014. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database[J]. Agricultural and Forest Meteorology, 192-193: 108-120.
doi: 10.1016/j.agrformet.2014.03.007 |
84 |
Yuan W P, Chen Y, Xia J Z, et al.2016. Estimating crop yield using a satellite-based light use efficiency model[J]. Ecological Indicators, 60: 702-709.
doi: 10.1016/j.ecolind.2015.08.013 |
85 |
Zhang H L, Liu G H, Feng X F.2011. A process model for simulating net primary productivity (NPP) based on the interaction of water-heat process and nitrogen: A case study in Lantsang Valley[J]. Journal of Forestry Research, 22(1): 93-97.
doi: 10.1007/s11676-011-0132-5 |
86 |
Zhang L X, Zhou D C, Fan J W, et al.2015. Comparison of four light use efficiency models for estimating terrestrial gross primary production[J]. Ecological Modelling, 300: 30-39.
doi: 10.1016/j.ecolmodel.2015.01.001 |
87 |
Zhang M L, Lal R, Zhao Y Y, et al.2016. Estimating net primary production of natural grassland and its spatio-temporal distribution in China[J]. Science of the Total Environment, 553: 184-195.
doi: 10.1016/j.scitotenv.2016.02.106 pmid: 26925730 |
88 |
Zhou Y L, Xing B L, Ju W M.2015. Assessing the impact of urban sprawl on net primary productivity of terrestrial ecosystems using a process-based model: A case study in Nanjing, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5): 2318-2331.
doi: 10.1109/JSTARS.2015.2440274 |
[1] | 杜欣儒, 路紫, 李仁杰, 董雅晴, 高伟. 中国枢纽机场时间延误成本估算与航线影响分析及中美比较[J]. 地理科学进展, 2020, 39(7): 1160-1171. |
[2] | 谭荣辉, 刘耀林, 刘艳芳, 何青松. 城市增长边界研究进展——理论模型、划定方法与实效评价[J]. 地理科学进展, 2020, 39(2): 327-338. |
[3] | 薛岚. 国外乡村舒适性研究综述与启示[J]. 地理科学进展, 2020, 39(12): 2129-2138. |
[4] | 周恺, 和琳怡, 张一雯. 共享短租平台的概念发展、市场影响和空间交互关系研究综述[J]. 地理科学进展, 2020, 39(11): 1934-1943. |
[5] | 赵瑞东, 方创琳, 刘海猛. 城市韧性研究进展与展望[J]. 地理科学进展, 2020, 39(10): 1717-1731. |
[6] | 段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8): 1182-1195. |
[7] | 高卿, 骆华松, 王振波, 宋金平. 美丽中国的研究进展及展望[J]. 地理科学进展, 2019, 38(7): 1021-1033. |
[8] | 陈颖彪, 郑子豪, 吴志峰, 千庆兰. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展, 2019, 38(2): 205-223. |
[9] | 刘蛟, 刘铁, 黄粤, 包安明. 基于遥感数据的叶尔羌河流域水文过程模拟与分析[J]. 地理科学进展, 2017, 36(6): 753-761. |
[10] | 王灵恩, 王磊, 钟林生, 成升魁. 国内外旅游食物消费研究综述[J]. 地理科学进展, 2017, 36(4): 513-526. |
[11] | 肖练练, 钟林生, 周睿, 虞虎. 近30年来国外国家公园研究进展与启示[J]. 地理科学进展, 2017, 36(2): 244-255. |
[12] | 塔娜, 刘志林. 西方城市女性时空行为研究的新趋势及其对中国的启示[J]. 地理科学进展, 2017, 36(10): 1208-1217. |
[13] | 石先武, 国志兴, 张尧, 方佳毅, 胡可嘉, 刘钦政. 风暴潮灾害脆弱性研究综述[J]. 地理科学进展, 2016, 35(7): 889-897. |
[14] | 舒华, 宋辞, 裴韬. 室内定位数据分析与应用研究进展[J]. 地理科学进展, 2016, 35(5): 580-588. |
[15] | 赵明伟, 岳天祥. 高精度曲面建模方法研究进展与分类[J]. 地理科学进展, 2016, 35(4): 401-408. |
|