地理科学进展 ›› 2017, Vol. 36 ›› Issue (5): 585-596.doi: 10.18306/dlkxjz.2017.05.006
李斌1,2(), 王慧敏3, 秦明周2,4,*(
), 张鹏岩2,4
收稿日期:
2016-06-01
出版日期:
2017-05-20
发布日期:
2017-05-20
通讯作者:
秦明周
作者简介:
作者简介:李斌(1974-),河南汝州人,高级实验师,博士研究生,主要从事GIS与环境地理研究,E-mail:
基金资助:
Bin LI1,2(), Huimin WANG3, Mingzhou QIN2,4,*(
), Pengyan ZHANG2,4
Received:
2016-06-01
Online:
2017-05-20
Published:
2017-05-20
Contact:
Mingzhou QIN
Supported by:
摘要:
通过研究归一化植被指数(NDVI)、归一化水汽指数(NDMI)与地表温度(LST)的相关关系,对比NDVI和NDMI定量分析LST的适宜程度。以Landsat 8遥感影像为数据源,以郑汴都市区为例,反演LST,计算NDVI和NDMI。从整体、分区、像元等不同层面分析NDVI和NDMI与LST的相关关系,并利用GEO-Da软件,分析150 m、300 m、450 m三种不同采样间隔数据的NDVI、NDMI与LST的空间相关性。主要结论为:①NDVI与LST的线性拟合度较差,而NDMI与LST具有很强的线性关系,剖面分析显示NDMI与LST呈显著负相关关系。②缓冲区分析结果表明,随着距城市中心距离的增加,用地类型增多,LST和NDMI之间的相关性逐渐增强。③在Moran's I空间相关性分析中,不同采样间隔下两指数与LST的负相关关系均比较明显,但由于水体在2个指数中数值的差异,使NDMI与LST表现出更强的空间负相关性,而NDVI与LST空间相关性则相对较弱。因此,总的来说NDMI是热环境研究的有效指标,与NDVI相比,NDMI与LST的负相关关系更强、更稳定,也更适宜于对LST的定量分析。
李斌, 王慧敏, 秦明周, 张鹏岩. NDVI、NDMI与地表温度关系的对比研究[J]. 地理科学进展, 2017, 36(5): 585-596.
Bin LI, Huimin WANG, Mingzhou QIN, Pengyan ZHANG. Comparative study on the correlations between NDVI, NDMI and LST[J]. PROGRESS IN GEOGRAPHY, 2017, 36(5): 585-596.
表2
缓冲区NDMI-LST的线性回归分析"
区域 | 缓冲区半径/km | R2 | 回归方程 | 自由度 | 区域 | 缓冲区半径/km | R2 | 回归方程 | 自由度 |
---|---|---|---|---|---|---|---|---|---|
郑州市 | 0.5 | 0.243 | y = -20.849x + 49.209 | 928 | 中牟县 | 0.5 | 0.033 | y = -4.084x + 35.724 | 925 |
1.0 | 0.209 | y = -19.815x + 48.136 | 2664 | 1.0 | 0.178 | y = -8.180x + 37.840 | 2661 | ||
1.5 | 0.311 | y = -22.342x + 49.152 | 4396 | 1.5 | 0.401 | y = -17.166x + 43.225 | 4408 | ||
2.0 | 0.417 | y = -29.190x + 53.907 | 6160 | 2.0 | 0.301 | y = -18.166x + 44.008 | 6145 | ||
2.5 | 0.298 | y = -28.433x + 53.888 | 7910 | 2.5 | 0.461 | y = -25.607x + 48.666 | 7925 | ||
3.0 | 0.354 | y = -25.252x + 51.525 | 9647 | 3.0 | 0.474 | y = -29.608x + 50.836 | 9645 | ||
3.5 | 0.234 | y = -22.235x + 49.628 | 11407 | 3.5 | 0.505 | y = -25.396x + 47.723 | 11426 | ||
4.0 | 0.270 | y = -26.600x + 52.205 | 13168 | 4.0 | 0.546 | y = -26.417x + 48.295 | 13097 | ||
4.5 | 0.171 | y = -20.423x + 48.116 | 14882 | 5.0 | 0.579 | y = -26.752x + 48.306 | 16654 | ||
5.0 | 0.195 | y = -23.178x + 49.911 | 16636 | 5.5 | 0.628 | y = -30.059x + 50.703 | 18346 | ||
5.5 | 0.326 | y = -30.130x + 54.403 | 18369 | 6.0 | 0.607 | y = -28.380x + 49.686 | 20138 | ||
6.0 | 0.350 | y = -29.325x + 53.308 | 20129 | 6.5 | 0.623 | y = -29.759x + 50.838 | 21815 | ||
6.5 | 0.399 | y = -29.839x + 53.812 | 21835 | 7.0 | 0.568 | y = -26.586x + 48.513 | 23608 | ||
7.0 | 0.366 | y = -29.070x + 53.401 | 23616 | 7.5 | 0.576 | y = -25.094x + 47.324 | 25370 | ||
7.5 | 0.367 | y = -27.477x + 52.335 | 25287 | 8.0 | 0.584 | y = -28.452x + 49.986 | 27039 | ||
8.0 | 0.356 | y = -25.619x + 51.066 | 27104 | 8.5 | 0.610 | y = -30.197x + 51.334 | 28823 | ||
8.5 | 0.407 | y = -29.332x + 53.511 | 28842 | 9.0 | 0.630 | y = -31.872x + 52.685 | 30638 | ||
9.0 | 0.398 | y = -32.580x + 55.542 | 30525 | 开封市 | 0.5 | 0.009 | y = -2.313x + 33.926 | 925 | |
9.5 | 0.413 | y = -35.210x + 57.236 | 32347 | 1.0 | 0.260 | y = -17.877x + 42.875 | 2667 | ||
10.0 | 0.402 | y = -32.520x + 55.566 | 34074 | 1.5 | 0.446 | y = -47.803x + 60.906 | 4391 | ||
10.5 | 0.399 | y = -30.274x + 54.014 | 35794 | 2.0 | 0.319 | y = -40.069x + 56.520 | 6154 | ||
11.0 | 0.323 | y = -30.914x + 54.005 | 37546 | 2.5 | 0.362 | y = -34.108x + 52.790 | 7918 | ||
11.5 | 0.318 | y = -27.295x + 51.801 | 39631 | 3.0 | 0.316 | y = -21.770x + 45.261 | 9646 | ||
12.0 | 0.372 | y = -27.668x + 52.344 | 41009 | 3.5 | 0.295 | y = -22.519x + 45.753 | 11421 | ||
12.5 | 0.429 | y = -29.299x + 53.172 | 42844 | 4.0 | 0.459 | y = -24.834x + 47.320 | 13125 | ||
13.0 | 0.496 | y = -32.015x + 54.758 | 44149 | 4.5 | 0.547 | y = -25.370x + 47.443 | 14885 | ||
13.5 | 0.470 | y = -29.711x + 53.287 | 43346 | 5.0 | 0.566 | y = -25.419x + 47.248 | 16651 | ||
14.0 | 0.528 | y = -33.138x + 55.629 | 43118 | 5.5 | 0.522 | y = -25.170x + 47.163 | 18374 | ||
14.5 | 0.551 | y = -35.129x + 56.732 | 43307 | 6.0 | 0.609 | y = -27.567x + 48.530 | 20084 | ||
15.0 | 0.466 | y = -30.534x + 53.455 | 43318 | 6.5 | 0.642 | y = -28.850x + 49.537 | 20669 | ||
15.5 | 0.534 | y = -30.042x + 52.985 | 43960 | 7.0 | 0.681 | y = -30.975x + 50.972 | 21169 | ||
16.0 | 0.531 | y = -34.612x + 55.691 | 42313 | ||||||
16.5 | 0.500 | y = -30.932x + 53.374 | 42435 | ||||||
17.0 | 0.532 | y = -34.884x + 55.999 | 39269 |
表3
双变量局部Moran's I 集聚图统计"
采样间隔/m | 变 量 | 不显著点数 (占比/%) | 第一象限High-High 点数(占比/%) | 第三象限Low-Low 点数(占比/%) | 第二象限Low-High 点数(占比/%) | 第四象限High-Low 点数(占比/%) |
---|---|---|---|---|---|---|
150 | NDVI-LST | 82199(61.8) | 3483(2.6) | 6068(4.6) | 23635(17.8) | 17671(13.3) |
NDMI-LST | 82189(61.8) | 2522(1.9) | 2496(1.9) | 24612(18.5) | 21237(16.0) | |
300 | NDVI-LST | 21630(65.0) | 952(2.9) | 1578(4.7) | 5239(15.7) | 3874(11.6) |
NDMI-LST | 21621(65.0) | 815(2.4) | 830(2.5) | 5381(16.2) | 4626(13.9) | |
450 | NDVI-LST | 9901(67.0) | 457(3.1) | 728(4.9) | 2124(14.4) | 1572(10.6) |
NDMI-LST | 9944(67.3) | 410(2.8) | 419(2.8) | 2134(14.4) | 1875(12.7) |
[1] | 白洁, 刘绍民, 扈光. 2008. 针对TM/ETM+遥感数据的地表温度反演与验证[J]. 农业工程学报, 24(9): 148-154. |
[Bai J, Liu S M, Hu G.2008. Inversion and verification of land surface temperature with remote sensing TM/ETM+ data[J]. Transactions of the Chinese Society of Agricultural Engineering, 24(9): 148-154.] | |
[2] |
宫阿都, 陈云浩, 李京, 等. 2007. 北京市城市热岛与土地利用/覆盖变化的关系研究[J]. 中国图象图形学报, 12(8): 1476-1482.
doi: 10.3969/j.issn.1006-8961.2007.08.028 |
[Gong A D, Chen Y H, Li J, et al.2007. Study on relationship between urban heat island and urban land use and cover change in Beijing[J]. Journal of Image and Graphics, 12(8): 1476-1482.]
doi: 10.3969/j.issn.1006-8961.2007.08.028 |
|
[3] | 胡菊旸, 唐世浩, 董立新. 2014. FY3A/MERSI地表温度反演[J]. 遥感技术与应用, 29(4): 531-538. |
[Hu J Y, Tang S H, Dong L X.2014. Land surface temperature retrieval from FY3A/MERSI[J]. Remote Sensing Technology and Application, 29(4): 531-538.] | |
[4] | 蒋大林, 匡鸿海, 曹晓峰, 等. 2015. 基于Landsat 8的地表温度反演算法研究: 以滇池流域为例[J]. 遥感技术与应用, 30(3): 448-454. |
[Jiang D L, Kuang H H, Cao X F, et al.2015. Study of land surface temperature retrieval based on Landsat 8: With the sample of Dianchi Lake basin[J]. Remote Sensing Technology and Application, 30(3): 448-454.] | |
[5] | 历华, 柳钦火, 邹杰. 2009. 基于MODIS数据的长株潭地区NDBI和NDVI与地表温度的关系研究[J]. 地理科学, 29(2): 262-267. |
[Li H, Liu Q H, Zou J.2009. Relationships of LST to NDBI and NDVI in Changsha-Zhuzhou-Xiangtan area based on MODIS data[J]. Scientia Geographica Sinica, 29(2): 262-267.] | |
[6] |
马伟, 赵珍梅, 刘翔, 等. 2010. 植被指数与地表温度定量关系遥感分析: 以北京市TM数据为例[J]. 国土资源遥感, 22(4): 108-112.
doi: 10.6046/gtzyyg.2010.04.22 |
[Ma W, Zhao Z M, Liu X, et al.2010. A quantitative analysis of the relationship between vegetation indices and land surface temperature based on remote sensing: A case study of TM data for Beijing[J]. Remote Sensing for Land & Resources, 22(4): 108-112.]
doi: 10.6046/gtzyyg.2010.04.22 |
|
[7] | 钱乐祥, 崔海山. 2008. 归一化水汽指数与地表温度的关系[J]. 地理研究, 27(6): 1358-1366. |
[Qian L X, Cui H S.2008. Relationship between normalized difference moisture index and land surface temperature[J]. Geographical Research, 27(6): 1358-1366.] | |
[8] |
覃志豪, Li W J, Zhang M H, 等. 2003. 单窗算法的大气参数估计方法[J]. 国土资源遥感, 15(2): 37-43.
doi: 10.3969/j.issn.1001-070X.2003.02.010 |
[Qin Z H, Li W J, Zhang M H, et al.2003. Estimating of the essential atmospheric parameters of mono-window algorithm for land surface temperature retrieval from Landsat TM6[J]. Remote Sensing for Land & Resources, 15(2): 37-43.]
doi: 10.3969/j.issn.1001-070X.2003.02.010 |
|
[9] | 覃志豪, Zhang M H, Karnieli A, 等. 2001. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 56(4): 456-466. |
[Qin Z H, Zhang M H, Karnieli A, et al.2001. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 56(4): 456-466.] | |
[10] |
万鲁河, 王绍巍, 陈晓红. 2011. 基于GeoDA的哈大齐工业走廊GDP空间关联性[J]. 地理研究, 30(6): 977-984.
doi: 10.11821/yj2011060002 |
[Wan L H, Wang S W, Chen X H.2011. GeoDA-based spatial correlation analysis of GDP in Hadaqi industrial corridor[J]. Geographical Research, 30(6): 977-984.]
doi: 10.11821/yj2011060002 |
|
[11] | 王敏, 孟浩, 白杨, 等. 2013. 上海市土地利用空间格局与地表温度关系研究[J]. 生态环境学报, 22(2): 343-350. |
[Wang M, Meng H, Bai Y, et al.2013. Relationships between landscapes spatial pattern and land surface temperature in Shanghai[J]. Ecology and Environmental Sciences, 22(2): 343-350.] | |
[12] |
夏浪, 毛克彪, 马莹, 等. 2014. 基于可见光红外成像辐射仪数据的地表温度反演[J]. 农业工程学报, 30(8): 109-116.
doi: 10.3969/j.issn.1002-6819.2014.08.013 |
[Xia L, Mao K B, Ma Y, et al.2014. Retrieval land surface temperature from visible infrared imager radiometer suite data[J]. Transactions of the Chinese Society of Agricultural Engineering, 30(8): 109-116.]
doi: 10.3969/j.issn.1002-6819.2014.08.013 |
|
[13] | 谢苗苗, 王仰麟, 付梅臣. 2011. 城市地表温度热岛影响因素研究进展[J]. 地理科学进展, 30(1): 35-41. |
[Xie M M, Wang Y L, Fu M C.2011. An overview and perspective about causative factors of surface urban heat island effects[J]. Progress in Geography, 30(1): 35-41.] | |
[14] |
张小飞, 王仰麟, 吴健生, 等. 2006. 城市地域地表温度-植被覆盖定量关系分析: 以深圳市为例[J]. 地理研究, 25(3): 369-377.
doi: 10.3321/j.issn:1000-0585.2006.03.001 |
[Zhang X F, Wang Y L, Wu J S, et al.2006. Study on land surface temperature vegetation cover relationship in urban region: A case in Shenzhen City[J]. Geographical Research, 25(3): 369-377.]
doi: 10.3321/j.issn:1000-0585.2006.03.001 |
|
[15] |
朱怀松, 刘晓锰, 裴欢, 等. 2007. 热红外遥感反演地表温度研究现状[J]. 干旱气象, 25(2): 17-21.
doi: 10.3969/j.issn.1006-7639.2007.02.004 |
[Zhu H S, Liu X M, Pei H, et al.2007. Summary on retrieval of land surface temperature using thermal infrared remote sensing[J]. Arid Meteorology, 25(2): 17-21.]
doi: 10.3969/j.issn.1006-7639.2007.02.004 |
|
[16] |
Essa W, Verbeiren B, van der Kwast J, et al.2012. Evaluation of the DisTrad thermal sharpening methodology for urban areas[J]. International Journal of Applied Earth Observation and Geoinformation, 19: 163-172.
doi: 10.1016/j.jag.2012.05.010 |
[17] |
Gao B C.1996. NDWI: A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 58(3): 257-266.
doi: 10.1016/S0034-4257(96)00067-3 |
[18] |
Gillies R R, Kustas W P, Humes K S.1997. A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e[J]. International Journal of Remote Sensing, 18(15): 3145-3166.
doi: 10.1080/014311697217026 |
[19] | Hardisky M A, Klemas V, Smart R M.1983. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies[J]. Photogrammetric Engineering & Remote Sensing, 49(1): 77-84. |
[20] |
Hunt Jr E R, Rock B N, Nobel P S.1987. Measurement of leaf relative water content by infrared reflectance[J]. Remote Sensing of Environment, 22(3): 429-435.
doi: 10.1016/0034-4257(87)90094-0 |
[21] |
Lyon J G, Yuan D, Lunetta R S, et al.1998. A change detection experiment using vegetation indices[J]. Photogrammetric Engineering & Remote Sensing, 64(2): 143-150.
doi: 10.1144/petgeo.4.1.95 |
[22] |
Mallick J, Singh C K, Shashtri S, et al.2012. Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city[J]. International Journal of Applied Earth Observation and Geoinformation, 19: 348-358.
doi: 10.1016/j.jag.2012.06.002 |
[23] |
Raynolds M K, Comiso J C, Walker D A, et al.2008. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI[J]. Remote Sensing of Environment, 112(4): 1884-1894.
doi: 10.1016/j.rse.2007.09.008 |
[24] |
Sun D L, Kafatos M.2007. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America[J]. Geophysical Research Letters, 34(24): 497-507.
doi: 10.1029/2007GL031485 |
[25] |
Wan Z, Wang P, Li X.2004. Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA[J]. International Journal of Remote Sensing, 25(1): 61-72.
doi: 10.1080/0143116031000115328 |
[26] |
Weng Q H, Lu D S, Schubring J.2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment, 89(4): 467-483.
doi: 10.1016/j.rse.2003.11.005 |
[27] |
Yuan F, Bauer M E.2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 106(3): 375-386.
doi: 10.1016/j.rse.2006.09.003 |
[28] |
Zhang Y S, Odeh I O A, Han C F.2009. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis[J]. International Journal of Applied Earth Observation and Geoinformation, 11(4): 256-264.
doi: 10.1016/j.jag.2009.03.001 |
[1] | 史潇, 王国杰, 孙明, 李玉涛, 王博妮, 沈婕. 高分辨红外辐射探测器地表温度数据在江苏地区1980—2009年间适用性评估[J]. 地理科学进展, 2020, 39(8): 1283-1295. |
[2] | 赵彩杉, 曾刚, 张丽娟, 张学珍. 基于Google Earth和MODIS陆地数据的农林地转换对地表温度的影响——以长江中下游及毗邻地区为例[J]. 地理科学进展, 2019, 38(5): 698-708. |
[3] | 高静, 龚健, 李靖业. “源-汇”景观格局的热岛效应研究——以武汉市为例[J]. 地理科学进展, 2019, 38(11): 1770-1782. |
[4] | 温小洁, 姚顺波, 赵敏娟. 基于降水条件的城镇化与植被覆盖协调发展研究[J]. 地理科学进展, 2018, 37(10): 1352-1361. |
[5] | 江颖慧, 焦利民, 张博恩. 城市地表温度与NDVI空间相关性的尺度效应[J]. 地理科学进展, 2018, 37(10): 1362-1370. |
[6] | 李元征, 尹科, 周宏轩, 王晓琳, 胡聃. 基于遥感监测的城市热岛研究进展[J]. 地理科学进展, 2016, 35(9): 1062-1074. |
[7] | 郑姗姗, 万庆, 贾明元. 基于STARMA模型的城市暴雨积水点积水短时预测[J]. 地理科学进展, 2014, 33(7): 949-957. |
[8] | 马仁锋. 大都市创意空间识别研究——基于上海市创意企业分析视角[J]. 地理科学进展, 2012, 31(8): 1013-1023. |
[9] | 张丽君, 秦耀辰, 张金萍, 张艳. 郑汴都市区产业CO2排放演变机理及脱钩分析[J]. 地理科学进展, 2012, 31(4): 426-434. |
[10] | 刘玲玲, 刘良云, 胡勇. 1982-2006 年欧亚大陆植被生长季开始时间遥感监测分析[J]. 地理科学进展, 2012, 31(11): 1433-1442. |
[11] | 周婷婷, 陈文惠. 基于MODIS数据和气象观测数据的 气温空间插值方法比较[J]. 地理科学进展, 2011, 30(9): 1143-1151. |
[12] | 柯灵红, 王正兴, 宋春桥, 卢振权. 青藏高原东北部MODIS LST时间序列重建及与台站地温比较[J]. 地理科学进展, 2011, 30(7): 819-826. |
[13] | 谢苗苗, 王仰麟, 付梅臣. 城市地表温度热岛影响因素研究进展[J]. 地理科学进展, 2011, 30(1): 35-41. |
[14] | 杨振山,蔡建明. 空间统计学进展及其在经济地理研究中的应用[J]. 地理科学进展, 2010, 29(6): 757-768. |
[15] | 李秀霞,倪晋仁. 土壤侵蚀及其影响因素空间相关性分析[J]. 地理科学进展, 2009, 28(2): 161-166. |
|