地理科学进展 ›› 2016, Vol. 35 ›› Issue (3): 304-319.doi: 10.18306/dlkxjz.2016.03.005
收稿日期:
2015-06-01
接受日期:
2015-08-01
出版日期:
2016-03-25
发布日期:
2016-03-25
通讯作者:
朱文泉
作者简介:
作者简介:范德芹(1982-),女,内蒙古呼伦贝尔人,博士后,主要从事遥感数据处理研究,E-mail:
基金资助:
Deqin FAN1(), Xuesheng ZHAO1, Wenquan ZHU2,*(
), Zhoutao ZHENG2
Received:
2015-06-01
Accepted:
2015-08-01
Online:
2016-03-25
Published:
2016-03-25
Contact:
Wenquan ZHU
Supported by:
摘要:
基于植物物候的遥感监测对于研究植被对气候变化的响应具有重要的科学价值。本文在阐述植物物候遥感监测原理及其通用技术流程的基础上,分别从植被类型及其所处的地理条件、遥感数据源及其预处理、植物物候遥感识别方法和植物物候遥感监测结果评价4个方面分析了影响植物物候遥感监测精度的因素,并针对当前研究中存在的不足,探讨了提高植物物候遥感监测精度的可行性途径,即建立高分辨率的近地面遥感定点观测及数据共享网络,发展普适性更强的卫星遥感时序数据去噪及植被指数曲线重建方法,寻求稳定性更高的植物物候期遥感识别方法,探索综合运用地面观测、遥感监测与模型模拟实现物候观测空间尺度拓展的可能性。
范德芹, 赵学胜, 朱文泉, 郑周涛. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3): 304-319.
Deqin FAN, Xuesheng ZHAO, Wenquan ZHU, Zhoutao ZHENG. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. PROGRESS IN GEOGRAPHY, 2016, 35(3): 304-319.
1 |
常清, 王思远, 孙云晓, 等. 2014. 青藏高原典型植被生长季遥感模型提取分析[J]. 地球信息科学学报, 16(5): 815-823.
doi: 10.3724/SP.J.1047.2014.00815 |
[Chang Q, Wang S Y, Sun Y X, et al.2014. The remote sensing monitoring model of the typical vegegtation phenology in the Qinghai-Tibetan Plateau[J]. Journal of Geo-information Science, 16(5): 815-823.]
doi: 10.3724/SP.J.1047.2014.00815 |
|
2 |
陈效逑, 王林海. 2009. 遥感物候学研究进展[J]. 地理科学进展, 28(1): 33-40.
doi: 10.11820/dlkxjz.2009.01.005 |
[Chen X Q, Wang L H.2009. Progress in remote sensing phenological research[J]. Progress in Geography, 28(1): 33-40.]
doi: 10.11820/dlkxjz.2009.01.005 |
|
3 |
崔凯, 蒙继华, 左廷英. 2012. 遥感作物物候监测方法研究[J]. 安徽农业科学, 40(10): 6279-6281, 6321.
doi: 10.3969/j.issn.0517-6611.2012.10.201 |
[Cui K, Meng J H, Zuo T Y.2012. Monitoring of crop phenology with remote sensing[J]. Journal of Anhui Agricultural Sciences, 40(10): 6279-6281, 6321.]
doi: 10.3969/j.issn.0517-6611.2012.10.201 |
|
4 |
范德芹, 朱文泉, 潘耀忠, 等. 2014. 青藏高原小嵩草高寒草甸返青期遥感识别方法筛选[J]. 遥感学报, 18(5): 1117-1127.
doi: 10.11834/jrs.20143299 |
[Fan D Q, Zhu W Q, Pan Y Z, et al.2014. Identifying an optimal method for estimating greenup date of Kobresia pygmaea alpine meadow in Qinghai-Tibetan Plateau[J]. Journal of Remote Sensing, 18(5): 1117-1127.]
doi: 10.11834/jrs.20143299 |
|
5 | 侯学会, 牛铮, 高帅. 2014. 近十年中国东北森林植被物候遥感监测[J]. 光谱学与光谱分析, 34(2): 515-519. |
[Hou X H, Niu Z, Gao S.2014. Phenology of forest vegetation in northeast of China in ten years using remote sensing[J]. Spectroscopy and Spectral Analysis, 34(2): 515-519.] | |
6 |
侯学会, 牛铮, 高帅, 等. 2013. 基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测[J]. 农业工程学报, 29(1): 142-150.
doi: 10.3969/j.issn.1002-6819.2013.01.019 |
[Hou X H, Niu Z, Gao S, et al.2013. Monitoring vegetation phenology in farming-pastoral zone using SPOT-VGT NDVI data[J]. Transactions of the Chinese Society of Agricultural Engineering, 29(1): 142-150.]
doi: 10.3969/j.issn.1002-6819.2013.01.019 |
|
7 |
胡琼, 吴文斌, 宋茜, 等. 2015. 农作物种植结构遥感提取研究进展[J]. 中国农业科学, 48(10): 1900-1914.
doi: 10.3864/j.issn.0578-1752.2015.10.004 |
[Hu Q, Wu W B, Song Q, et al.2015. Recent progresses in research of crop patterns mapping by using remote sensing[J]. Scientia Agricultura Sinica, 48(10): 1900-1914.]
doi: 10.3864/j.issn.0578-1752.2015.10.004 |
|
8 |
梁守真, 施平, 邢前国. 2011. MODIS NDVI时间序列数据的去云算法比较[J]. 国土资源遥感, (1): 33-36.
doi: 10.6046/gtzyyg.2011.01.06 |
[Liang S Z, Shi P, Xing Q G.2011. A comparison between the algorithms for removing cloud pixel from MODIS NDVI time series data[J]. Remote Sensing for Land & Resources, (1): 33-36.]
doi: 10.6046/gtzyyg.2011.01.06 |
|
9 | 林忠辉, 莫兴国. 2006. NDVI时间序列谐波分析与地表物候信息获取[J]. 农业工程学报, 22(12): 138-144. |
[Lin Z H, Mo X G.2006. Phenologies from harmonics analysis of AVHRR NDVI time series[J]. Transactions of the Chinese Society of Agricultural Engineering, 22(12): 138-144.] | |
10 | 牟敏杰, 朱文泉, 王伶俐, 等. 2012. 基于通量塔净生态系统碳交换数据的植被物候遥感识别方法评价[J]. 应用生态学报, 23(2): 319-327. |
[Mou M J, Zhu W Q, Wang L L, et al.2012. Evaluation of remote sensing extraction methods for vegetation phenology based on flux tower net ecosystem carbon exchange data[J]. Chinese Journal of Applied Ecology, 23(2): 319-327.] | |
11 | 那晓东, 张树清, 李晓峰, 等. 2007. MODIS NDVI时间序列在三江平原湿地植被信息提取中的应用[J]. 湿地科学, 5(3): 227-236. |
[Na X D, Zhang S Q, Li X F, et al.2007. Application of MODIS NDVI time series to extracting wetland vegetation information in the Sanjiang Plain[J]. Wetland Science, 5(3): 227-236.] | |
12 |
司文才, 刘峻明. 2011. 冬小麦关键物候空间分布遥感监测方法研究[J]. 中国农业科技导报, 13(6): 82-89.
doi: 10.3969/j.issn.1008-0864.2011.06.14 |
[Si W C, Liu J M.2011. Studies on remote sensing monitoring method for spatial distribution of winter wheat critical phenology[J]. Journal of Agricultural Science and Technology, 13(6): 82-89.]
doi: 10.3969/j.issn.1008-0864.2011.06.14 |
|
13 |
宋春桥, 游松财, 柯灵红, 等. 2011. 藏北地区三种时序NDVI重建方法与应用分析[J]. 地球信息科学学报, 13(1): 133-143.
doi: 10.3724/SP.J.1047.2011.00133 |
[Song C Q, You S C, Ke L H, et al.2011. Analysis on three NDVI time-series reconstruction methods and their applications in North Tibet[J]. Journal of Geo-information Science, 13(1): 133-143.]
doi: 10.3724/SP.J.1047.2011.00133 |
|
14 |
唐仁茂, 陈英英, 叶建元. 2010. 探空、地面及卫星资料反演水汽含量的比较[J]. 气象科学, 30(3): 373-377.
doi: 10.3969/j.issn.1009-0827.2010.03.013 |
[Tang R M, Chen Y Y, Ye J Y.2010. The comparison of water vapor content retrieved by radiosonde, ground station and satellite data[J]. Scientia Meteorologica Sinica, 30(3): 373-377.]
doi: 10.3969/j.issn.1009-0827.2010.03.013 |
|
15 | 武永峰, 李茂松, 宋吉青. 2008. 植物物候遥感监测研究进展[J]. 气象与环境学报, 24(3): 51-58. |
[Wu Y F, Li M S, Song J Q.2008. Advance in vegetation phenology monitoring based on remote sensing[J]. Journal of Meteorology and Environment, 24(3): 51-58.] | |
16 | 颉继珍, 王红说, 黄敬峰. 2010. 基于MODIS时间序列数据的作物季相信息提取[J]. 遥感技术与应用, 25(5): 647-652. |
[Xie J Z, Wang H S, Huang J F.2010. Crop phenology information extraction using MODIS multi-temporal data[J]. Remote Sensing Technology and Application, 25(5): 647-652.] | |
17 |
徐岩岩, 张佳华, Yang L M.2012. 基于MODIS-EVI数据和Symlet11小波识别东北地区水稻主要物候期[J]. 生态学报, 32(7): 2091-2098.
doi: 10.5846/stxb201108131186 |
[Xu Y Y, Zhang J H, Yang L M.2012. Detecting major phenological stages of rice using MODIS-EVI data and Symlet11 wavelet in Northeast China[J]. Acta Ecologica Sinica, 32(7): 2091-2098.]
doi: 10.5846/stxb201108131186 |
|
18 | 徐永明, 覃志豪, 陈爱军. 2010. 基于查找表的MODIS逐像元大气校正方法研究[J]. 武汉大学学报: 信息科学版, 35(8): 959-962. |
[Xu Y M, Qin Z H, Chen A J.2010. A pixel-by-pixel atmospheric correction algorithm for MODIS data based on look-up table[J]. Geomatics and Information Science of Wuhan University, 35(8): 959-962.] | |
19 | 许青云, 杨贵军, 龙慧灵, 等. 2014. 基于MODIS NDVI多年时序数据的农作物种植识别[J]. 农业工程学报, 30(11): 134-144. |
[Xu Q Y, Yang G J, Long H L, et al.2014. Crop information identification based on MODIS NDVI time-series data[J]. Transactions of the Chinese Society of Agricultural Engineering, 30(11): 134-144.] | |
20 | 闫慧敏, 曹明奎, 刘纪远, 等. 2005. 基于多时相遥感信息的中国农业种植制度空间格局研究[J]. 农业工程学报, 21(4): 85-90. |
[Yan H M, Cao M K, Liu J Y, et al.2005. Characterizing spatial patterns of multiple cropping system in China from multi- temporal remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 21(4): 85-90.] | |
21 | 姚晨, 黄微, 李先华. 2009. 地形复杂区域的典型植被指数评估[J]. 遥感技术与应用, 24(4): 496-501. |
[Yao C, Huang W, Li X H.2009. Evaluation of topographical influence on vegetation indices of rugged terrain[J]. Remote Sensing Technology and Application, 24(4): 496-501.] | |
22 |
姚延娟, 刘强, 柳钦火, 等. 2007. 异质性地表的叶面积指数反演的不确定性分析[J]. 遥感学报, 11(6): 763-770.
doi: 10.11834/jrs.200706104 |
[Yao Y J, Liu Q, Liu Q H, et al.2007. LAI inversion uncertainties in heterogeneous surface[J]. Journal of Remote Sensing, 11(6): 763-770.]
doi: 10.11834/jrs.200706104 |
|
23 | 于信芳, 庄大方. 2006. 基于MODIS NDVI数据的东北森林物候期监测[J]. 资源科学, 28(4): 111-117. |
[Yu X F, Zhuang D F.2006. Monitoring forest phenophases of Northeast China based on MODIS NDVI data[J]. Resources Science, 28(4): 111-117.] | |
24 | 张峰, 吴炳方, 刘成林, 等. 2004. 利用时序植被指数监测作物物候的方法研究[J]. 农业工程学报, 20(1): 155-159. |
[Zhang F, Wu B F, Liu C L, et al.2004. Methods of monitoring crop phonological stages using time series of vegetation indicator[J]. Transactions of the Chinese Society of Agricultural Engineering, 20(1): 155-159.] | |
25 |
张云松, 冯钟葵, 石丹. 2007. 卫星观测方位对遥感成像的影响[J]. 遥感学报, 11(4): 433-438.
doi: 10.11834/jrs.20070460 |
[Zhang Y S, Feng Z H, Shi D.2007. The influence of satellite observation direction on remote sensing image[J]. Journal of Remote Sensing, 11(4): 433-438.]
doi: 10.11834/jrs.20070460 |
|
26 | 赵英时, 等. 2003. 遥感应用分析原理与方法[M]. 北京: 科学出版社. |
[Zhao Y S, et al.2003. Yaogan yingyong fenxi yuanli yu fangfa[M]. Beijing, China: Science Press.] | |
27 | 朱博, 王新鸿, 唐伶俐, 等. 2010. 光学遥感图像信噪比评估方法研究进展[J]. 遥感技术与应用, 25(2): 303-309. |
[Zhu B, Wang X H, Tang L L, et al.2010. Review on methods for SNR estimation of optical remote sensing imagery[J]. Remote Sensing Technology and Application, 25(2): 303-309.] | |
28 |
Ahrends H E, Etzold S, Kutsch W L, et al.2009. Tree phenology and carbon dioxide fluxes: Use of digital photography for process-based interpretation at the ecosystem scale[J]. Climate Research, 39(3): 261-274.
doi: 10.3354/cr00811 |
29 |
Atkinson P M, Jeganathan C, Dash J, et al.2012. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology[J]. Remote Sensing of Environment, 123: 400-417.
doi: 10.1016/j.rse.2012.04.001 |
30 |
Arvor D, Jonathan M, Meirelles M S P, et al.2011. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil[J]. International Journal of Remote Sensing, 32(22): 7847-7871.
doi: 10.1080/01431161.2010.531783 |
31 | Badeck F W, Bondeau A, Böttcher K, et al.2004. Responses of spring phenology to climate change[J]. New Phytologist, 162(2): 295-309. |
32 |
Balzter H, Gerard F, George C, et al.2007. Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in central and east Siberia[J]. Journal of Climate, 20(15): 3713-3729.
doi: 10.1175/JCLI4226 |
33 |
Beck P S A, Atzberger C, Høgda K A, et al.2006. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI[J]. Remote Sensing of Environment, 100(3): 321-334.
doi: 10.1016/j.rse.2005.10.021 |
34 |
Chappell A, Seaquist J W, Eklundh L.2001. Improving the estimation of noise from NOAA AVHRR NDVI for Africa using geostatistics[J]. International Journal of Remote Sensing, 22(6): 1067-1080.
doi: 10.1080/014311601300074603 |
35 |
Chen J, Jönsson P, Tamura M, et al.2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote Sensing of Environment, 91(3-4): 332-344.
doi: 10.1016/j.rse.2004.03.014 |
36 |
Chuine I.2000. A unified model for budburst of trees[J]. Journal of Theoretical Biology, 207(3): 337-347.
doi: 10.1006/jtbi.2000.2178 pmid: 11082304 |
37 |
Coops N C, Hilker T, Bater C W, et al.2012. Linking ground-based to satellite-derived phenological metrics in support of habitat assessment[J]. Remote Sensing Letters, 3(3): 191-200.
doi: 10.1080/01431161.2010.550330 |
38 |
Delbart N, Kergoat L, Le Toan T, et al.2005. Determination of phenological dates in boreal regions using normalized difference water index[J]. Remote Sensing of Environment, 97(1): 26-38.
doi: 10.1016/j.rse.2005.03.011 |
39 |
Delbart N, Le Toan T, Kergoat L, et al.2006. Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982-2004)[J]. Remote Sensing of Environment, 101(1): 52-62.
doi: 10.1016/j.rse.2005.11.012 |
40 |
Dragoni D, Schmid H P, Wayson C A, et al.2011. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA[J]. Global Change Biology, 17(2): 886-897.
doi: 10.1111/j.1365-2486.2010.02281.x |
41 |
Duchemin B, Goubier J, Courrier G.1999. Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data[J]. Remote Sensing of Environment, 67(1): 68-82.
doi: 10.1016/S0034-4257(98)00067-4 |
42 |
Fan D Q, Zhu W Q, Zheng Z T, et al.2015. Change in the green-up dates for Quercus mongolica in Northeast China and its climate-driven mechanism from 1962 to 2012[J]. PLoS ONE, 10(6): e130516.
doi: 10.1371/journal.pone.0130516 |
43 |
Fischer A.1994. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters[J]. Remote Sensing of Environment, 48(2): 220-230.
doi: 10.1016/0034-4257(94)90143-0 |
44 |
Fisher J I, Mustard J F, Vadeboncoeur M A.2006. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite[J]. Remote Sensing of Environment, 100(2): 265-279.
doi: 10.1016/j.rse.2005.10.022 |
45 |
Gao B C, Li R R.2000. Quantitative improvement in the estimates of NDVI values from remotely sensed data by correcting thin cirrus scattering effects[J]. Remote Sensing of Environment, 74(3): 494-502.
doi: 10.1016/S0034-4257(00)00141-3 |
46 |
Graham E A, Riordan E C, Yuen E M, et al.2010. Public internet-connected cameras used as a cross-continental ground-based plant phenology monitoring system[J]. Global Change Biology, 16(11): 3014-3023.
doi: 10.1111/j.1365-2486.2010.02164.x |
47 |
Hartfield K A, Marsh S E, Kirk C D, et al.2013. Contemporary and historical classification of crop types in Arizona[J]. International Journal of Remote Sensing, 34(17): 6024-6036.
doi: 10.1080/01431161.2013.793861 |
48 |
Hilker T, Gitelson A, Coops N C, et al.2011. Tracking plant physiological properties from multi-angular tower-based remote sensing[J]. Oecologia, 165(4): 865-876.
doi: 10.1007/s00442-010-1901-0 |
49 |
Hill M J, Román M O, Schaaf C B, et al.2011. Characterizing vegetation cover in global savannas with an annual foliage clumping index derived from the MODIS BRDF product[J]. Remote Sensing of Environment, 115(8): 2008-2024.
doi: 10.1016/j.rse.2011.04.003 |
50 |
Holben B N.1986. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 7(11): 1417-1434.
doi: 10.1080/01431168608948945 |
51 | Hudson I L, Keatley M R.2010. Phenological research: Methods for environmental and climate change analysis[M]. Heidelberg, Germany: Springer. |
52 |
Huete A R, Didan K, Miura T, et al.2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 83(1-2): 195-213.
doi: 10.1016/S0034-4257(02)00096-2 |
53 |
Hufkens K, Friedl M, Sonnentag O, et al.2012. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology[J]. Remote Sensing of Environment, 117: 307-321.
doi: 10.1016/j.rse.2011.10.006 |
54 |
Jiang N, Zhu W Q, Zheng Z T, et al.2013. A comparative analysis between GIMSS NDVIg and NDVI3g for monitoring vegetation activity change in the Northern Hemisphere during 1982-2008[J]. Remote Sensing, 5(8): 4031-4044.
doi: 10.3390/rs5084031 |
55 |
Jiang Z Y, Huete A R, Didan K, et al.2008. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sensing of Environment, 112(10): 3833-3845.
doi: 10.1016/j.rse.2008.06.006 |
56 |
Jones M O, Kimball J S, Jones L A, et al.2012. Satellite passive microwave detection of North America start of season[J]. Remote Sensing of Environment, 123: 324-333.
doi: 10.1016/j.rse.2012.03.025 |
57 |
Jönsson P, Eklundh L.2002. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1824-1832.
doi: 10.1109/TGRS.2002.802519 |
58 |
Jönsson P, Eklundh L.2004. TIMESAT: A program for analyzing time-series of satellite sensor data[J]. Computers & Geosciences, 30(8): 833-845.
doi: 10.1016/j.cageo.2004.05.006 |
59 |
Kurc S A, Benton L M.2010. Digital image-derived greenness links deep soil moisture to carbon uptake in a creosotebush-dominated shrubland[J]. Journal of Arid Environments, 74(5): 585-594.
doi: 10.1016/j.jaridenv.2009.10.003 |
60 |
Lloyd D.1990. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery[J]. International Journal of Remote Sensing, 11(12): 2269-2279.
doi: 10.1080/01431169008955174 |
61 |
Ma M G, Veroustraete F.2006. Reconstructing pathfinder AVHRR Land NDVI time-series data for the Northwest of China[J]. Advances in Space Research, 37(4): 835-840.
doi: 10.1016/j.asr.2005.08.037 |
62 |
Matsushita B, Yang W, Chen J, et al.2007. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density Cypress forest[J]. Sensors, 7(11): 2636-2651.
doi: 10.3390/s7112636 |
63 |
Melaas E K, Friedl M A, Zhu Z.2013. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data[J]. Remote Sensing of Environment, 132: 176-185.
doi: 10.1016/j.rse.2013.01.011 |
64 | Menzel A, Sparks T H, Estrella N, et al.2006. Altered geographic and temporal variability in phenology in response to climate change[J]. Global Ecology and Biogeography, 15(5): 498-504. |
65 |
Migliavacca M, Galvagno M, Cremonese E, et al.2011. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake[J]. Agricultural and Forest Meteorology, 151(10): 1325-1337.
doi: 10.1016/j.agrformet.2011.05.012 |
66 |
Moody A, Johnson D M.2001. Land-surface phenologies from AVHRR using the discrete Fourier transform[J]. Remote Sensing of Environment, 75(3): 305-323.
doi: 10.1016/S0034-4257(00)00175-9 |
67 |
Morin X, Lechowicz M J, Augspurger C, et al.2009. Leaf phenology in 22 North American tree species during the 21st century[J]. Global Change Biology, 15(4): 961-975.
doi: 10.1111/j.1365-2486.2008.01735.x |
68 | Moulin S, Kergoat L, Viovy N, et al.1997. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements[J]. Journal of Climate, 10(6): 1154-1170. |
69 |
Myneni R B, Keeling C D, Tucker C J, et al.1997. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 386: 698-702.
doi: 10.1038/386698a0 |
70 |
Peñuelas J, Filella I, Comas P.2002. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region[J]. Global Change Biology, 8(6): 531-544.
doi: 10.1046/j.1365-2486.2002.00489.x |
71 | Peñuelas J, Rutishauser T, Filella I.2009. Phenology feedbacks on climate change[J]. Science, 324: 887-888. |
72 |
Piao S L, Ciais P, Friedlingstein P, et al.2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming[J]. Nature, 451: 49-52.
doi: 10.1038/nature06444 pmid: 18172494 |
73 |
Piao S L, Fang J Y, Zhou L M, et al.2006. Variations in satellite-derived phenology in China's temperate vegetation[J]. Global Change Biology, 12(4): 672-685.
doi: 10.1111/j.1365-2486.2006.01123.x |
74 |
Rahman H.2001. Influence of atmospheric correction on the estimation of biophysical parameters of crop canopy using satellite remote sensing[J]. International Journal of Remote Sensing, 22(7): 1245-1268.
doi: 10.1080/01431160151144332 |
75 | Rathcke B, Lacey E P.1985. Phenological patterns of terrestrial plants[J]. Annual Review of Ecology and Systematics, 16(1): 179-214. |
76 | Reed B C, Brown J F.2005. Trend analysis of time-series phenology derived from satellite data[C]//Proceedings of the 3rd International Workshop on the analysis of multi-temporal remote sensing images. Biloxi, MS: IEEE: 166-168. |
77 |
Reed B C, Brown J F, VanderZee D, et al.1994. Measuring phenological variability from satellite imagery[J]. Journal of Vegetation Science, 5(5): 703-714.
doi: 10.2307/3235884 |
78 |
Richardson A D, Braswell B H, Hollinger D Y, et al.2009. Near-surface remote sensing of spatial and temporal variation in canopy phenology[J]. Ecological Applications, 19(6): 1417-1428.
doi: 10.1890/08-2022.1 pmid: 19769091 |
79 |
Richardson A D, Hollinger D Y, Dail D B, et al.2009. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests[J]. Tree Physiology, 29(3): 321-331.
doi: 10.1093/treephys/tpn040 pmid: 19203967 |
80 |
Richardson A D, Jenkins J P, Braswell B H, et al.2007. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest[J]. Oecologia, 152(2): 323-334.
doi: 10.1007/s00442-006-0657-z |
81 | Roerink G J, Menenti M, Verhoef W.2000. Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing, 21(9): 1911-1917. |
82 |
Sakamoto T, Yokozawa M, Toritani H, et al.2005. A crop phenology detection method using time-series MODIS data[J]. Remote Sensing of Environment, 96(3-4): 366-374.
doi: 10.1016/j.rse.2005.03.008 |
83 |
Schwartz M D, Ahas R, Aasa A.2006. Onset of spring starting earlier across the Northern Hemisphere[J]. Global Change Biology, 12(2): 343-351.
doi: 10.1111/j.1365-2486.2005.01097.x |
84 |
Schwartz M D, Reed B C, White M A.2002. Assessing satellite-derived start-of-season measures in the conterminous USA[J]. International Journal of Climatology, 22(14): 1793-1805.
doi: 10.1002/joc.819 |
85 |
Sonnentag O, Hufkens K, Teshera-Sterne C, et al.2012. Digital repeat photography for phenological research in forest ecosystems[J]. Agricultural and Forest Meteorology, 152: 159-177.
doi: 10.1016/j.agrformet.2011.09.009 |
86 |
Soudani K, Le Maire G, Dufrêne E, et al.2008. Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from moderate resolution imaging spectroradiometer (MODIS) data[J]. Remote Sensing of Environment, 112(5): 2643-2655.
doi: 10.1016/j.rse.2007.12.004 pmid: 18329025 |
87 |
Sparks T H, Menzel A.2002. Observed changes in seasons: An overview[J]. International Journal of Climatology, 22(14): 1715-1725.
doi: 10.1002/joc.821 |
88 |
Van Niel T G, McVicar T R.2004. Determining temporal windows for crop discrimination with remote sensing: A case study in south-eastern Australia[J]. Computers and Electronics in Agriculture, 45(1-3): 91-108.
doi: 10.1016/j.compag.2004.06.003 |
89 |
Viovy N, Arino O, Belward A S.1992. The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series[J]. International Journal of Remote Sensing, 13(8): 1585-1590.
doi: 10.1080/01431169208904212 |
90 |
Walther G R, Post E, Convey P, et al.2002. Ecological responses to recent climate change[J]. Nature, 416: 389-395.
doi: 10.1038/416389a pmid: 11919621 |
91 |
Wang M, Tao F L, Shi W T.2014. Corn yield forecasting in Northeast China using remotely sensed spectral indices and crop phenology metrics[J]. Journal of Integrative Agriculture, 13(7): 1538-1545.
doi: 10.1016/S2095-3119(14)60817-0 |
92 |
Wang Y T, Hou X Y, Wang M J, et al.2013. Topographic controls on vegetation index in a hilly landscape: A case study in the Jiaodong Peninsula, Eastern China[J]. Environmental Earth Sciences, 70(2): 625-634.
doi: 10.1007/s12665-012-2146-5 |
93 |
Wardlow B D, Egbert S L, Kastens J H.2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains[J]. Remote Sensing of Environment, 108(3): 290-310.
doi: 10.1016/j.rse.2006.11.021 |
94 | Webb R H, Boyer D E, Turne R M.2010. Repeat photography: Methods and applications in the natural sciences[M]. Washington DC: Island Press. |
95 | White M A, De Beurs K M, Didan K, et al.2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006[J]. Global Change Biology, 15(10): 2335-2359. |
96 |
White M A, Nemani R R.2006. Real-time monitoring and short-term forecasting of land surface phenology[J]. Remote Sensing of Environment, 104(1): 43-49.
doi: 10.1016/j.rse.2006.04.014 |
97 |
White M A, Thornton P E, Running S W.1997. A continental phenology model for monitoring vegetation responses to interannual climatic variability[J]. Global Biogeochemical Cycles, 11(2): 217-234.
doi: 10.1029/97GB00330 |
98 |
Xin J F, Yu Z R, Van Leeuwen L, et al.2002. Mapping crop key phenological stages in the North China Plain using NOAA time series images[J]. International Journal of Applied Earth Observation and Geoinformation, 4(2): 109-117.
doi: 10.1016/S0303-2434(02)00007-7 |
99 |
Xu H, Twine T E, Yang X.2014. Evaluating remotely sensed phenological metrics in a dynamic ecosystem model[J]. Remote Sensing, 6(6): 4660-4686.
doi: 10.3390/rs6064660 |
100 |
Xin Q C, Broich M, Zhu P, et al.2015. Modeling grassland spring onset across the western United States using climate variables and MODIS-derived phenology metrics[J]. Remote Sensing of Environment, 161: 63-77.
doi: 10.1016/j.rse.2015.02.003 |
101 |
Yu F F, Price K P, Ellis J, et al.2003. Response of seasonal vegetation development to climatic variations in eastern central Asia[J]. Remote Sensing of Environment, 87(1): 42-54.
doi: 10.1016/S0034-4257(03)00144-5 |
102 |
Yu H Y, Luedeling E, Xu J C.2010. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(51): 22151-22156.
doi: 10.1073/pnas.1012490107 pmid: 21115833 |
103 |
Zhang G L, Zhang Y J, Dong J W, et al.2013. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(11): 4309-4314.
doi: 10.1073/pnas.1210423110 pmid: 23440201 |
104 | Zhang Q Y, Cheng Y B, Lyapustin A I, et al.2014. Estimation of crop Gross Primary Production (GPP): I. impact of MODIS observation footprint and impact of vegetation BRDF characteristics[J]. Agricultural and Forest Meteorology, 191: 51-63. |
105 |
Zhang X Y, Friedl M A, Schaaf C B, et al.2003. Monitoring vegetation phenology using MODIS[J]. Remote Sensing of Environment, 84(3): 471-475.
doi: 10.1016/S0034-4257(02)00135-9 |
106 |
Zhu W Q, Pan Y Z, He H, et al.2012. A changing-weight filter method for reconstructing a high-quality NDVI time series to preserve the integrity of vegetation phenology[J]. IEEE Transactions on Geoscience and Remote Sensing, 50(4): 1085-1094.
doi: 10.1109/TGRS.2011.2166965 |
107 |
Zhu W Q, Tian H Q, Xu X F, et al.2012. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982-2006[J]. Global Ecology and Biogeography, 21(2): 260-271.
doi: 10.1111/j.1466-8238.2011.00675.x |
[1] | 黄莹泽, 邱炳文, 何玉花, 张珂, 邹凤丽. 东北地区水稻扩张的海拔优势区间分析[J]. 地理科学进展, 2020, 39(9): 1557-1564. |
[2] | 史潇, 王国杰, 孙明, 李玉涛, 王博妮, 沈婕. 高分辨红外辐射探测器地表温度数据在江苏地区1980—2009年间适用性评估[J]. 地理科学进展, 2020, 39(8): 1283-1295. |
[3] | 付占辉, 梅林, 郑茹敏, 王彤彤. 东北地区城市女性就业水平空间分异机制[J]. 地理科学进展, 2020, 39(8): 1308-1318. |
[4] | 程晗蓓, 邹游, 林赛南, 李志刚. 居住迁移对居民健康的影响研究进展述评[J]. 地理科学进展, 2020, 39(7): 1210-1223. |
[5] | 丁建军, 王璋, 柳艳红, 余方薇. 中国连片特困区经济韧性测度及影响因素分析[J]. 地理科学进展, 2020, 39(6): 924-937. |
[6] | 廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5): 709-715. |
[7] | 胡栩, 聂勇, 徐霞, 蒋盛, 张镱锂. 塔里木盆地南缘和田地区土地利用变化的遥感研究[J]. 地理科学进展, 2020, 39(4): 577-590. |
[8] | 史卓琳, 黄昌. 河流水情要素遥感研究进展[J]. 地理科学进展, 2020, 39(4): 670-684. |
[9] | 唐寅, 王中根, 王婉清, 黄火键, 袁勇. 适用于遥感影像的水生态空间多功能分类体系研究[J]. 地理科学进展, 2020, 39(3): 454-460. |
[10] | 谭荣辉, 刘耀林, 刘艳芳, 何青松. 城市增长边界研究进展——理论模型、划定方法与实效评价[J]. 地理科学进展, 2020, 39(2): 327-338. |
[11] | 薛岚. 国外乡村舒适性研究综述与启示[J]. 地理科学进展, 2020, 39(12): 2129-2138. |
[12] | 周恺, 和琳怡, 张一雯. 共享短租平台的概念发展、市场影响和空间交互关系研究综述[J]. 地理科学进展, 2020, 39(11): 1934-1943. |
[13] | 胡小芳, 李小雅, 王天宇, 赵红敏, 杨铄, 邓磊, 李景旺. 民宿空间分布的集聚模式与影响因素研究——基于杭州、湖州、恩施的比较[J]. 地理科学进展, 2020, 39(10): 1698-1707. |
[14] | 赵瑞东, 方创琳, 刘海猛. 城市韧性研究进展与展望[J]. 地理科学进展, 2020, 39(10): 1717-1731. |
[15] | 姜凯斯,刘正佳,李裕瑞,王永生,王昱. 黄土丘陵沟壑区典型村域土地利用变化及对区域乡村转型发展的启示[J]. 地理科学进展, 2019, 38(9): 1305-1315. |
|