地理科学进展 ›› 2016, Vol. 35 ›› Issue (2): 137-147.doi: 10.18306/dlkxjz.2016.02.001
• 本刊特稿 • 下一篇
收稿日期:
2015-12-01
接受日期:
2016-01-01
出版日期:
2016-02-10
发布日期:
2016-02-10
作者简介:
作者简介:崔鹏(1957-),男,陕西西安人,中国科学院院士,主要从事山地灾害与水土保持研究,E-mail:
基金资助:
Received:
2015-12-01
Accepted:
2016-01-01
Online:
2016-02-10
Published:
2016-02-10
Supported by:
摘要:
山洪泥石流是中国常见的自然灾害,充分认识其形成机制与潜在风险是防灾减灾的关键。本文阐述了山洪泥石流形成机理,以及风险分析与管理的方法和内容,系统认识了地表产流流量激增、土体破坏物质供给激增、沟道堵塞体级联溃决流量放大和动床侵蚀规模增大等4个山洪泥石流的形成过程,介绍了基于动力过程的山洪泥石流风险评估方法和承灾体易损性评估方法,构建了基于灾害动力过程的风险评估与风险制图方法。进而,基于风险评估结果,提出可用于具体灾害点减灾的风险管理内容和风险调控技术、灾害防治的工程与非工程措施与制技术方案。最后,重点讨论了包括灾害风险预测、临灾预案、灾害防治工程方案等内容的风险处置对策,并形成一套基于山洪泥石流动力过程的风险评估与风险管理理论与方法体系。
崔鹏, 邹强. 山洪泥石流风险评估与风险管理理论与方法[J]. 地理科学进展, 2016, 35(2): 137-147.
Peng CUI, Qiang ZOU. Theory and method of risk assessment and risk management of debris flows and flash floods[J]. PROGRESS IN GEOGRAPHY, 2016, 35(2): 137-147.
表1
山洪泥石流风险分级及特征描述"
风险编号 | 风险等级 | 空间分布与危害特征 |
---|---|---|
I | 微度风险 | 山洪、泥石流分布极少,规模很小,其危险度与易损度均很低,受危害导致损毁的风险很小,一般不影响正常生产和生活。 |
II | 低度风险 | 山洪、泥石流分布少,规模不大,承灾体易损度较低,遭受轻度危害,破坏小,灾害综合风险值较低,需要采取一定预防措施。 |
III | 中度风险 | 山洪、泥石流分布较广泛,规模较大,承灾体易损度较高,灾害危害较重,灾害风险水平为中等,需布设灾害防治措施以保障生产和生活安全。 |
IV | 高度风险 | 山洪、泥石流分布广泛,规模大,破坏力强,危险性与易损度均较高,风险很高,频繁受灾,严重影响生产和生活,应实施综合减灾工程,加强风险管理。 |
[1] |
崔鹏. 2014. 中国山地灾害研究进展与未来应关注的科学问题[J]. 地理科学进展, 33(2): 145-152.
doi: 10.11820/dlkxjz.2014.02.001 |
[Cui P.2014. Progress and prospects in research on mountain hazards in China[J]. Progress in Geography, 33(2): 145-152.]
doi: 10.11820/dlkxjz.2014.02.001 |
|
[2] | 崔鹏. 2015. 长江上游山地灾害与水土流失地图集[M]. 北京: 科学出版社. |
[Cui P.2015. Atlas of mountain hazards and soil erosion in the upper Yangtze[M]. Beijing: Science Press.] | |
[3] | 葛全胜, 邹铭, 郑景云. 2008. 中国自然灾害风险综合评估初步研究[M]. 北京: 科学出版社. |
[Ge Q S, Zou M, Zheng J Y.2008. Integrated assessment of natural disaster risk in China[M]. Beijing: Science Press.] | |
[4] | 国家防汛抗旱总指挥部, 中华人民共和国水利部. 2013. 2013中国水旱灾害公报[M]. 北京: 中国水利水电出版社. |
[The State Flood Control and Drought Relief Headquarters, the Ministry of Water Resources of the People’s Republic of China. 2013. Bulletin of flood and drought disasters in China, 2013[M]. Beijing: China: Water & Power Press.] | |
[5] |
胡凯衡, 韦方强. 2005. 基于数值模拟的泥石流危险性分区方法[J]. 自然灾害学报, 14(1): 10-14.
doi: 10.3969/j.issn.1004-4574.2005.01.002 |
[Hu K H, Wei F Q.2005. Numerical-simulation-based debris flow risk zoning[J]. Journal of Natural Disasters, 14(1): 10-14.]
doi: 10.3969/j.issn.1004-4574.2005.01.002 |
|
[6] |
史培军. 2005. 四论灾害系统研究的理论与实践[J]. 自然灾害学报, 14(6): 1-7.
doi: 10.3969/j.issn.1004-4574.2005.06.001 |
[Shi P J.2005. Theory and practice on disaster system research in a fourth time[J]. Journal of Natural Disasters, 14(6): 1-7.]
doi: 10.3969/j.issn.1004-4574.2005.06.001 |
|
[7] | 史培军, 邹铭, 李保俊, 等. 2005. 从区域安全建设到风险管理体系的形成: 从第一届世界风险大会看灾害与风险研究的现状与发展趋向[J]. 地球科学进展, 20(2): 173-179. |
[Shi P J, Zou M, Li B J, et al.2005. Regional safety construction and risk management system: the actuality and trend of the study of disaster and risk based on the world congress on risk[J]. Advances in Earth Science, 20(2): 173-179.] | |
[8] |
涂勇, 何秉顺, 褚明华, 等. 2014. 2013年全国山洪灾害特征分析[J]. 中国水利, (18): 18-22.
doi: 10.3969/j.issn.1000-1123.2014.18.005 |
[Tu Y, He B S, Chu M H, et al.2014. Characteristics of mountain flood disasters in 2013[J]. China Water Resources, (18): 18-22.]
doi: 10.3969/j.issn.1000-1123.2014.18.005 |
|
[9] | 王鑫, 曹志先, 岳志远. 2009. 强不规则地形上浅水二维流动的数值计算研究[J]. 水动力学研究与进展, 24(1): 56-62. |
[Wang X, Cao Z X, Yue Z Y.2009. Numerical modeling of shallow flows over irregular topography[J]. Journal of Hydrodynamics (Ser. A), 24(1): 56-62.] | |
[10] | 曾超. 2014. 泥石流作用下建筑物易损性评价方法[D]. 成都: 中国科学院大学. |
[Zeng C.2014. Vulnerability assessment of building to debris flow hazard[D]. Chengdu: University of Chinese Academy of Sciences.] | |
[11] | 张志彤. 2015. 关于2014年防汛抗旱工作的报告[J]. 中国防汛抗旱, 25(1): 8-13. |
[Zhang Z T.2015. Guanyu 2014 nian fangxun kanghan gongzuo de baogao, 25(1): 8-13.] | |
[12] | 邹强. 2014. 川藏公路泥石流灾害风险分析[D]. 成都: 中国科学院大学. |
[Zou Q.2014. Risk analysis of debris flows along Sichuan-Tibet highways[D]. Chengdu, China: University of Chinese Academy of Sciences.] | |
[13] | AGS.2007. Commentary on guideline for landslide susceptibility, hazard and risk zoning for land use management[R]. Australian: Australian Geomechanics Society Landslide Task force Landslide Zoning Working Group, 42(1): 37-62. |
[14] |
Bisson M, Favalli M, Fornaciai A, et al.2005. A rapid method to assess fire-related debris flow hazard in the Mediterranean region: an example from Sicily (southern Italy)[J]. International Journal of Applied Earth Observation and Geoinformation, 7(3): 217-231.
doi: 10.1016/j.jag.2005.04.003 |
[15] | Blaikie P, Cannon T, Davis I, et al.2004. At risk: natural hazards, people's vulnerability and disasters[M]. New York: Roublisher Press. |
[16] |
Chau K T, Lo K H.2004. Hazard assessment of debris flows for Leung King Estate of Hong Kong by incorporating GIS with numerical simulations[J]. Natural Hazards and Earth System Science, 4(1): 103-116.
doi: 10.5194/nhess-4-103-2004 |
[17] |
Cui P, Hu K H, Zhang J Q, et al.2011. Prediction of the debris-flow danger area by combining hydrological and inundation simulation methods[J]. Journal of Mountain Science, 8(1): 1-9.
doi: 10.1007/s11629-011-2040-8 |
[18] |
Cui P, Zhou G G D, Zhu X H, et al.2013. Scale amplification of natural debris flows caused by cascading landslide dam failures[J]. Geomorphology, 182: 173-189.
doi: 10.1016/j.geomorph.2012.11.009 |
[19] |
Cui P, Zou Q, Xiang L Z, et al.2013. Risk assessment of simultaneous debris flows in mountain townships[J]. Progress in Physical Geography, 37(4): 516-542.
doi: 10.1177/0309133313491445 |
[20] |
Fuchs S, Ornetsmüller C, Totschnig R.2012. Spatial scan statistics in vulnerability assessment: an application to mountain hazards[J]. Natural Hazards, 64(3): 2129-2151.
doi: 10.1007/s11069-011-0081-5 |
[21] |
Huggel C, Kääb A, Haeberli W, et al.2003. Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps[J]. Natural Hazards and Earth System Science, 3(6): 647-662.
doi: 10.5194/nhess-3-647-2003 |
[22] |
Liu X L, Lei J Z.2003. A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China)[J]. Geomorphology, 52(3-4): 181-191.
doi: 10.1016/S0169-555X(02)00242-8 |
[23] | Mano T.2011. Community-based disaster management and public awareness[R]. Disaster Risk Vulnerablity Conference. New Delhi, India: Mahatma Gandhi University. |
[24] | O'Brien J S, Julien P Y, Fullerton W T.1993. Two-dimensional water flood and mudflow simulation[J]. Journal of Hydraulic Engineering, 119(2): 244-261. |
[25] |
Pradhan B.2010. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia[J]. Advances in Space Research, 45(10): 1244-1256.
doi: 10.1016/j.asr.2010.01.006 |
[26] | Smith R E, Smettem K R J, Broadbridge P, et al.2002. Infiltration theory for hydrologic applications[M]. Washington DC: American Geophysical Union. |
[27] | UN/ISDR (United National International Strategy for Disaster Reduction). 2004. Living with risk: a global review of disaster reduction initiatives[M]. Geneva: United Nations Publications. |
[28] | UN/ISDR (The United Nations Office for Disaster Risk Reduction). 2005. Hyogo framework for action 2005-2015: building the resilience of nations and communities to disasters[R]. Kobe, Hyogo, Japan: UN World Conference on Disaster Risk Reduction. |
[29] | UN/ISDR (The United Nations Office for Disaster Risk Reduction). 2015. Sendai framework for action 2015-2030: building the resilience of nations and communities to disasters[R]. Sendai, Japan: Third UN World Conference on Disaster Risk Reduction. |
[30] | UNDHA (United Nations, Department of Humanitarian Affairs). 1992. Internationally Agreed Glossary of Basic Terms Related to Disaster Management[R]. Geneva: United Nations Department of Humanitarian Affairs. |
[31] | UNDP (United Nations Development Program). 2004. A global report reducing disaster risk: a challenge for development[R]. New York: UNDP, l-14. |
[1] | 方佳毅, 史培军. 全球气候变化背景下海岸洪水灾害风险评估研究进展与展望[J]. 地理科学进展, 2019, 38(5): 625-636. |
[2] | 张会, 李铖, 程炯, 吴志峰, 吴艳艳. 基于“H-E-V”框架的城市洪涝风险评估研究进展[J]. 地理科学进展, 2019, 38(2): 175-190. |
[3] | 张宁, 王大为. 基于风险地形建模的毒品犯罪风险评估和警务预测[J]. 地理科学进展, 2018, 37(8): 1131-1139. |
[4] | 李倩, 俞海洋, 李婷, 龙爽, 邵威, 王瑛, 许映军. 京津冀地区台风危险性评估——基于Gumbel分布的分析[J]. 地理科学进展, 2018, 37(7): 933-945. |
[5] | 孟晖, 李春燕, 张若琳, 李亚民. 京津冀地区县域单元地质灾害风险评估[J]. 地理科学进展, 2017, 36(3): 327-334. |
[6] | 扈海波. 城市暴雨积涝灾害风险突增效应研究进展[J]. 地理科学进展, 2016, 35(9): 1075-1086. |
[7] | 孙鸿烈, 陈宜瑜, 于贵瑞, 于秀波. 国际重大研究计划与中国生态系统研究展望——中国生态大讲堂百期学术演讲暨2014年春季研讨会评述[J]. 地理科学进展, 2014, 33(7): 865-873. |
[8] | 崔鹏. 中国山地灾害研究进展与未来应关注的科学问题[J]. 地理科学进展, 2014, 33(2): 145-152. |
[9] | 宋城城, 李梦雅, 王军, 许世远, 陈振楼. 基于复合情景的上海台风风暴潮灾害危险性模拟及其空间应对[J]. 地理科学进展, 2014, 33(12): 1692-1703. |
[10] | 方伟华, 林伟. 面向灾害风险评估的台风风场模型研究综述[J]. 地理科学进展, 2013, 32(6): 852-867. |
[11] | 李颖, 方伟华. 热带气旋降水模拟研究进展[J]. 地理科学进展, 2013, 32(4): 606-617. |
[12] | 兰恒星, 周成虎, 高星, 程维明, 王治华, 杨志华, 李郎平, 伍宇明. 四川雅安芦山地震灾区次生地质灾害评估及对策建议[J]. 地理科学进展, 2013, 32(4): 499-504. |
[13] | 张卫星, 周洪建. 灾害链风险评估的概念模型——以汶川5·12特大地震为例[J]. 地理科学进展, 2013, 32(1): 130-144. |
[14] | 刘光旭, 戴尔阜, 吴绍洪, 吴文祥. 泥石流灾害风险评估理论与方法研究[J]. 地理科学进展, 2012, 31(3): 383-391. |
[15] | 刘欢, 徐中春, 吴绍洪, 刘荣高. 基于GIS的中国地震灾害人口风险性分析[J]. 地理科学进展, 2012, 31(3): 368-374. |
|