地理科学进展 ›› 2015, Vol. 34 ›› Issue (10): 1241-1249.doi: 10.18306/dlkxjz.2015.10.004
收稿日期:
2015-02-01
接受日期:
2015-04-01
出版日期:
2015-10-20
发布日期:
2015-10-20
通讯作者:
叶庆华
作者简介:
作者简介:勾鹏(1987-),男,山东东营人,博士研究生,主要从事青藏高原湖冰遥感研究,E-mail:
基金资助:
Peng GOU1,2, Qinghua YE1,*(), Qiufang WEI3
Received:
2015-02-01
Accepted:
2015-04-01
Online:
2015-10-20
Published:
2015-10-20
Contact:
Qinghua YE
摘要:
湖冰物候事件是气候变化的敏感指示器。本文以西藏纳木错湖为研究对象,基于MODIS多光谱反射率产品数据监测了2000-2013年纳木错湖冰冻融日期,并结合多个气象站点的气象数据和实测湖面温度、湖面辐射亮温分析验证了湖冰变化的原因。纳木错湖冰变化较好地响应了区域气候变暖:开始冻结日期延迟和完全消融日期提前使湖冰存在期显著缩短(2.8 d/a)、湖冰冻结期增长、湖冰消融期缩短,其中消融期变化最为明显,平均每年缩短3.1 d。湖冰冻融日期的变化表明:2000年后纳木错湖冰冻结困难,消融加速,稳定性减弱。纳木错湖冰变化主要受湖面温度、湖面辐射亮温和气温变化的影响,它们可以作为气象因子来解释区域气候变化。
勾鹏, 叶庆华, 魏秋方. 2000-2013年西藏纳木错湖冰变化及其影响因素[J]. 地理科学进展, 2015, 34(10): 1241-1249.
Peng GOU, Qinghua YE, Qiufang WEI. Lake ice change at the Nam Co Lake on the Tibetan Plateau during 2000-2013 and influencing factors[J]. PROGRESS IN GEOGRAPHY, 2015, 34(10): 1241-1249.
表1
2000-2013年纳木错湖冰时间属性表"
年份 | 初冰日 | 完全冻结日 | 开始消融日 | 完全消融日 | 湖冰存在期/d | 湖冰冻结期/d | 湖冰完全封冻期/d | 湖冰消融期/d |
---|---|---|---|---|---|---|---|---|
2000/2001 | 284(-3) | 25 | 107(-1) | 164(-3) | 246 | 107 | 82 | 57 |
2001/2002 | 285(-4) | 15 | 51 | 160(-4) | 244 | 95 | 36 | 109 |
2002/2003 | 289(-3) | 36 | 92(-2) | 158(-4) | 234 | 112 | 56 | 66 |
2003/2004 | 289(-1) | 26 | 83 | 154 | 230 | 102 | 57 | 71 |
2004/2005 | 285 | 35 | 95(-2) | 154(-4) | 235 | 116 | 60 | 59 |
2005/2006 | 291(-1) | 42 | 99(-2) | 155(-4) | 229 | 116 | 57 | 56 |
2006/2007 | 287(-3) | 39(-3) | 96 | 156 | 234 | 117 | 57 | 60 |
2007/2008 | 301(-1) | 35(-1) | 109(-2) | 148 | 212 | 99 | 74 | 39 |
2008/2009 | 291(-1) | 42 | 94(-2) | 140(-4) | 215 | 117 | 52 | 46 |
2009/2010 | 289(-1) | 38 | 84(-3) | 143(-4) | 219 | 114 | 46 | 59 |
2010/2011 | 296(-3) | 40 | 118 | 146 | 215 | 109 | 78 | 28 |
2011/2012 | 290(-1) | 41(-3) | 90 | 144 | 219 | 116 | 49 | 54 |
2012/2013 | 302 | 42(-4) | 98(-1) | 146 | 210 | 106 | 56 | 48 |
平均 | 290.7 | 35.1 | 93.5 | 151.4 | 226.3 | 109.7 | 58.5 | 57.8 |
每年变幅/d | 1.0 | 1.6 | 1.4 | -1.8 | -2.8 | 0.6 | 0.2 | -3.1 |
表3
纳木错湖冰变化与气象数据的对比"
年份 | 初冰日 | 纳木错站日均温 稳定≤0℃日期 | 湖冰完全冻结日 | 保吉乡站完全冻结 日之前负积温/℃ | 开始消融日 | 日均温首次>0℃日期 |
---|---|---|---|---|---|---|
2005-2006 | 291(-1) | 295 | 42 | -934.19 | 99(-2) | 100 |
2006-2007 | 287(-3) | 291 | 39(-3) | -1055.78 | 96 | 96 |
2007-2008 | 301(-1) | 304 | 35(-1) | -906.19 | 109(-2) | 107 |
2008-2009 | 291(-1) | 295 | 42 | -1039.6 | 94(-2) | 97 |
2009-2010 | 289(-1) | 293 | 38 | -1006.99 | 84(-3) | 81 |
1 | 车涛, 李新, 晋锐. 2009. 利用被动微波遥感低频亮温数据监测青海湖封冻与解冻期[J]. 科学通报, 54(6): 787-791. |
[Che T, Li X, Jin R.2009. Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data[J]. Chinese Science Bulletin, 54(6): 787-791.] | |
2 | 李明慧, 康世昌, 朱立平, 等. 2008. 西藏纳木错沉积物单水方解石出现前后的环境变化[J]. 第四纪研究, 28(4): 601-609. |
[Li M H, Kang S C, Zhu L P, et al.2008. Late-holocene lake environment reflected by the occurrence of mono hydro calcite in Nam Co, Central Tibet[J]. Quaternary Sciences, 28(4): 601-609.] | |
3 | 林振耀, 赵昕奕. 1996. 青藏高原气温降水变化的空间特征[J]. 中国科学: 地球科学, 39(4): 354-358. |
[Lin Z Y,Zhao X Y.1996. Spatial characteristics of changes in temperature and precipitation of the Qinghai-Xizang (Tibet) Plateau[J]. Science in China: Earth Sciences, 39(4): 354-358.] | |
4 | 鲁安新, 姚檀栋, 王丽红, 等. 2005. 青藏高原典型冰川和湖泊变化遥感研究[J]. 冰川冻土, 27(6): 783-792. |
[Lu A X, Yao T D, Wang L H, et al.Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing[J]. Journal of Glaciology and Geocryology, 27(6): 783-792.] | |
5 | 曲斌, 康世昌, 陈锋, 等. 2012. 2006-2011年西藏纳木错湖冰状况及其影响因素分析[J]. 气候变化研究进展,8(5): 327-333. |
[Qu B, Kang S C, Chen F, et al.2012. Lake ice and its effect factors in the Nam Co Basin, Tibetan Plateau[J]. Progressus Inquisitiones de Mutatione Climatis, 8(5): 327-333.] | |
6 | 魏秋方. 2010. 纳木错湖冰的遥感监测方法研究[D]. 北京: 中国科学院研究生院. |
[Wei Q F.2010. Methods of lake ice monitoring by remote sensing at Nam Co[D]. Beijing, China: University of Chinese Academy of Sciences.] | |
7 | 殷青军, 杨英莲. 2005. 基于EOS/MODIS数据的青海湖遥感监测[J]. 湖泊科学, 17(4): 356-360. |
[Yin Q J, Yang Y L.2005. Remote sensing monitoring of Lake Qinghai based on EOS/MODIS data[J]. Journal of Lake Sciences,17(4): 356-360.] | |
8 | 张堂堂, 任贾文, 康世昌. 2004. 近期气候变暖念青唐古拉山拉弄冰川处于退缩状态[J]. 冰川冻土, 26(6): 736-739. |
[Zhang T T, Ren J W, Kang S C.2004. Lanong glacier retreat in Nyainqêntanglha range of Tibetan Plateau during 1970-2003[J]. Journal of Glaciology and Geocryology, 26(6): 736-739.] | |
9 | 张辛, 鄂栋臣. 2008. MODIS海冰数据监测中山站附近海冰的季节性变化[J]. 极地研究, 20(4): 346-354. |
[Zhang X, E D C.2008. Using the ice data of MODIS to inspect the seasonal variety of the surrounding sea ice of Zhongshan Station[J]. Chinese Journal of Polar Research, 20(4): 346-354.] | |
10 | 朱大岗, 孟宪刚, 赵希涛, 等. 2004. 西藏纳木错和藏北高原古大湖晚更新世以来的湖泊演化与气候变迁[J]. 中国地质, 31(3): 269-277. |
[Zhu D G, Meng X G, Zhao X T, et al.2004. Evolution and climatic change of Nam Co of Tibet and an ancient large lake in the northern Tibetan Plateau since the late Pleistocene[J]. Geology in China, 31(3): 269-277.] | |
11 | Bai X Z, Wang J, Sellinger C, et al.2012. Interannual variability of Great Lakes ice cover and its relationship to NAO and ENSO[J]. Journal of Geophysical Research: Oceans, 117(C3): 1276. |
12 | Bernhardt J, Engelhardt C, Kirillin G, et al.2012. Lake ice phenology in Berlin-Brandenburg from 1947-2007: observations and model hindcasts[J]. Climatic Change, 112(3- 4): 791-817. |
13 | Brown L C, Duguay C R.2010. The response and role of ice cover in lake-climate interactions[J]. Progress in Physical Geography, 34(5): 671-704. |
14 | Dozier J.1989. Spectral signature of Alpine snow cover from the landsat thematic mapper[J]. Remote Sensing of Environment, 28: 9-22. |
15 | Duguay C R, Flato G M, Jeffries M O, et al.2003. Ice-cover variability on shallow lakes at high latitudes: model simulations and observations[J]. Hydrological Processes, 17(17): 3465-3483. |
16 | Duguay C R, Prowse T D, Bonsal B R, et al.2006. Recent trends in Canadian lake ice cover[J]. Hydrological Processes, 20(4): 781-801. |
17 | Ghanbari R N, Bravo H R, Magnuson J J, et al.2009. Coherence between lake ice cover, local climate and teleconnections (Lake Mendota, Wisconsin)[J]. Journal of Hydroloy, 374(3-4): 282-293. |
18 | Howell S E L, Brown L C, Kang K K, et al.2009. Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000-2006[J]. Remote Sensing of Environment, 113(4): 816-834. |
19 | Johnson S L, Stefan H G.2006. Indicators of climate warming in Minnesota: lake ICE covers and snowmelt runoff[J]. Climatic Change, 75(4): 421-453. |
20 | Kang K K, Duguay C R, Howell S E L.2012. Estimating ice phenology on large northern lakes from AMSR-E: algorithm development and application to Great Bear Lake and Great Slave Lake, Canada[J]. The Cryosphere, 6(2): 235-254. |
21 | Kang S C, Xu Y W, You Q L, et al.2010. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 5(1): 015101. |
22 | Ke C Q, Tao A Q,Jin X.2013. Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/imager: 1978 to 2013[J]. Journal of Applied Remote Sensing, 7(1): 073477. |
23 | Kropáček J, Maussion F, Chen F, et al.2013. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data[J]. The Cryosphere, 7(1): 287-301. |
24 | Latifovic R, Pouliot D.2007. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record[J]. Remote Sensing of Environment, 106(4): 492-507. |
25 | Liu X D, Chen B D.2000. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 20(14): 1729-1742. |
26 | Livingstone D M.1997. Break-up dates of Alpine lakes as proxy data for local and regional mean surface air temperatures[J]. Climatic Change, 37(2): 407-439. |
27 | Magnuson J J, Benson B J,Kratz T K.1990. Temporal coherence in the limnology of a suite of lakes in Wisconsin, U.S.A.[J]. Freshwater Biology, 23(1): 145-159. |
28 | Magnuson J J, Robertson D M, Benson B J, et al.2000. Historical trends in lake and river ice cover in the Northern Hemisphere[J]. Science, 289: 1743-1746. |
29 | Marszelewski W, Skowron R.2006. Ice cover as an indicator of winter air temperature changes: case study of the Polish Lowland lakes[J]. Hydrological Sciences Journal, 51(2): 336-349. |
30 | Todd M C, Mackay A W.2003. Large-scale climatic controls on Lake Baikal ice cover[J]. Journal of Climate, 16(19): 3186-3199. |
31 | Wynne R H, Lillesand T M.1993. Satellite observation of lake ice as a climate indicator: initial results from statewide monitoring in Wisconsin[J]. Photogrammetric Engineering and Remote Sensing, 59(6): 1023-1031. |
32 | Zhang G S, Kang S C, Fujita K, et al.2013. Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau[J]. Journal of Glaciology, 59(213): 137-148. |
[1] | 史潇, 王国杰, 孙明, 李玉涛, 王博妮, 沈婕. 高分辨红外辐射探测器地表温度数据在江苏地区1980—2009年间适用性评估[J]. 地理科学进展, 2020, 39(8): 1283-1295. |
[2] | 孙赫, 苏凤阁. 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J]. 地理科学进展, 2020, 39(7): 1126-1139. |
[3] | 廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5): 709-715. |
[4] | 胡栩, 聂勇, 徐霞, 蒋盛, 张镱锂. 塔里木盆地南缘和田地区土地利用变化的遥感研究[J]. 地理科学进展, 2020, 39(4): 577-590. |
[5] | 史卓琳, 黄昌. 河流水情要素遥感研究进展[J]. 地理科学进展, 2020, 39(4): 670-684. |
[6] | 唐寅, 王中根, 王婉清, 黄火键, 袁勇. 适用于遥感影像的水生态空间多功能分类体系研究[J]. 地理科学进展, 2020, 39(3): 454-460. |
[7] | 陈瑞, 杨梅学, 万国宁, 王学佳. 基于水热变化的青藏高原土壤冻融过程研究进展[J]. 地理科学进展, 2020, 39(11): 1944-1958. |
[8] | 王婧, 李海蓉, 杨林生. 青藏高原大骨节病流行区环境、食物及人群硒水平研究[J]. 地理科学进展, 2020, 39(10): 1677-1686. |
[9] | 姜凯斯,刘正佳,李裕瑞,王永生,王昱. 黄土丘陵沟壑区典型村域土地利用变化及对区域乡村转型发展的启示[J]. 地理科学进展, 2019, 38(9): 1305-1315. |
[10] | 段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8): 1182-1195. |
[11] | 马明国,汤旭光,韩旭军,时伟宇,宋立生,黄静. 西南岩溶地区碳循环观测与模拟研究进展和展望[J]. 地理科学进展, 2019, 38(8): 1196-1205. |
[12] | 周玉科. 青藏高原植被NDVI对气候因子响应的格兰杰效应分析[J]. 地理科学进展, 2019, 38(5): 718-730. |
[13] | 陈颖彪, 郑子豪, 吴志峰, 千庆兰. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展, 2019, 38(2): 205-223. |
[14] | 吴其慧, 李畅游, 孙标, 史小红, 赵胜男, 韩知明. 1986—2017年呼伦湖湖冰物候特征变化[J]. 地理科学进展, 2019, 38(12): 1933-1943. |
[15] | 徐明, 石玉立, 王彬. 高分辨率青藏高原历史月降水数据重建[J]. 地理科学进展, 2018, 37(7): 923-932. |
|