地理科学进展 ›› 2015, Vol. 34 ›› Issue (4): 457-465.doi: 10.11820/dlkxjz.2015.04.007
出版日期:
2015-04-10
发布日期:
2015-04-10
作者简介:
作者简介:李清泉(1965-),男,安徽天长人,教授,博士生导师,主要从事地理信息系统、智能交通及3S集成等方面的研究,E-mail:
基金资助:
Qingquan LI1(), Baoding ZHOU1,2
Online:
2015-04-10
Published:
2015-04-10
摘要:
智慧城市近年来在全球范围内得到了广泛的重视,智慧城市的基础是对城市各要素的感知与理解。人是城市的主导因素,对个人的时空行为分析是城市感知的关键,对智慧城市的建设具有重要意义。个体时空行为分析一直受限于时空数据的获取手段,使得相关理论研究及应用受到了很大的限制。个体时空行为数据获取的挑战之一在于室内空间位置信息的获取。随着智能手机功能的日益强大和室内定位技术的发展,可以通过智能手机获取个体的室内位置信息;另外,智能手机内置的多种传感器使其具备强大的感知能力,可以检测用户的行为。因此,智能手机成为获取个体室内时空行为数据的理想终端。本文对基于智能手机的个体室内时空行为进行分析,首先介绍了室内定位的研究进展,然后给出基于智能手机进行个体室内时空行为分析的实例,最后对基于智能手机的个体室内时空行为分析对智慧城市建设的意义进行了讨论。通过智能手机获取的个体室内时空行为数据可以分析城市居民的实时空间分布及行为模式,对于智慧城市建设中的智慧交通、智慧安防以及智慧城管等应用提供数据支撑;基于大规模的历史个体室内时空行为数据,可以分析城市功能的时空变化特征,服务于智慧城市建设。
李清泉, 周宝定. 基于智能手机的个体室内时空行为分析[J]. 地理科学进展, 2015, 34(4): 457-465.
Qingquan LI, Baoding ZHOU. Smartphone-based individual indoor spatiotemporal behavior analysis[J]. PROGRESS IN GEOGRAPHY, 2015, 34(4): 457-465.
1 | 柴彦威, 龚华. 2001. 城市社会的时间地理学研究[J]. 北京大学学报: 哲学社会科学版, 38(5): 17-24. |
[Chai Y W, Gong H.2001. Time-geographical approach to the study of urban society[J]. Journal of Peking University: Humanities and Social Sciences, 38(5): 17-24.] | |
2 | 柴彦威, 塔娜, 2013. 中国时空间行为研究进展[J]. 地理科学进展, 32(9): 1362-1373. |
[Chai Y W, Ta N.Progress in space-time behavior research in China[J]. Progress in Geography, 32(9): 1362-1373.] | |
3 | 柴彦威, 赵莹, 马修军, 等. 2010. 基于移动定位的行为数据采集与地理应用研究[J]. 地域研究与开发, 29(6): 1-7. |
[Chai Y W, Zhao Y, Ma X J, et al.2010. Mobile positioning method for spatial-temporal behavioral data collection and its geographical applications[J]. Areal Research and Development, 29(6): 1-7.] | |
4 | 关美宝, 谷志莲, 塔娜, 等. 2013. 定性GIS在时空间行为研究中的应用[J]. 地理科学进展, 32(9): 1316-1331. |
[Guan M P, Gu Z L, Ta N, et al.2013. The application of the qualitative GIS in space-time research[J]. Progress in Geography, 32(9): 1316-1331.] | |
5 | 李德仁, 姚远, 邵振峰, 2014. 智慧城市中的大数据[J]. 武汉大学学报: 信息科学版, 39(6): 631-640. |
[Li D R, Yao Y, Shao Z F.2014. Big data in smart city[J]. GeoMatics and Information Science of Wuhan University, 39(6): 631-640.] | |
6 | 秦萧, 甄峰, 熊丽芳, 等. 2013. 大数据时代城市时空间行为研究方法[J]. 地理科学进展, 32(9): 1352-1361. |
[Qin X, Zhen F, Xiong L F, et al.2013. Methods in urban temporal and spatial behavior research in the big data era[J]. Progress in Geography, 32(9): 1352-1361.] | |
7 | 赵莹, 柴彦威, 陈洁, 等. 2009. 时空行为数据的GIS分析方法[J]. 地理与地理信息科学, 25(5): 1-5. |
[Zhao Y, Chai Y W, Chen J, et al.2009. GIS-based analyzing method for spatial-temporal behavior data[J]. Geography and Geo-Information Science, 25(5): 1-5.] | |
8 | 周宝定, 李清泉, 毛庆洲, 等. 2014. 用户行为感知辅助的室内行人定位[J]. 武汉大学学报: 信息科学版, 39(6): 719-723. |
[Zhou B D, Li Q Q, Mao Q Z, et al.2014. User activity awareness assisted indoor pedestrian localization[J]. GeoMatics and Information Science of Wuhan University, 39(6): 719-723.] | |
9 | Ahmad U, Gavrilov A, Nasir U, et al.2006. In-building localization using neural net- works[C]//2006 IEEE international conference on engineering of intelligent systems. islamabad. IEEE: 1-6. |
10 | Alvarez D, González R C, López A, et al.2006. Comparison of step length estimators from weareable accelerometer devices[C]//The 28th annual international conference of the IEEE engineering in medicine and biology society. New York: IEEE: 5964-5967. |
11 | Alzantot M, Youssef M.2012. UPTIME: ubiquitous pedestrian tracking using mobile phones[C]//IEEE wireless communications and networking conference (WCNC). Shanghai, China: IEEE: 3204-3209. |
12 | Bahl P, Padmanabhan V N.2000. RADAR: an in-building rf-based user location and tracking system[C]//The nineteenth annual joint conference of the IEEE computer and communications societies. Tel Aviv, Israel: IEEE: 775-784. |
13 | Bertram J E, Ruina A.2001. Multiple walking speed-frequency relations are predicted by constrained optimization[J]. Journal of Theoretical Biology, 209(4): 445-453. |
14 | Brunato M, Battiti R.2005. Statistical learning theory for location fingerprinting in wireless LANs[J]. Computer Networks, 47(6): 825-845. |
15 | Castro L A, Favela J.2005. Continuous tracking of user location in WLANs using recurrent neural networks[C]//Sixth mexican international conference on computer science. puebla. IEEE: 174-181. |
16 | Castro P, Chiu P, Kremenek T, et al.2001. A probabilistic room location service for wireless networked environments[C]//Ubicomp 2001: ubiquitous computing. Atlanta, GA: Springer:18-34. |
17 | Chen Y, Lymberopoulos D, Liu J, et al.2012. FM-based indoor localization[C]//The 10th international conference on mobile systems, applications, and services. Low Wood Bay, UK: ACM:169-182. |
18 | Chen Z, Zou H, Jiang H, et al.2015. Fusion of WiFi, smartphone sensors and landmarks using the kalman filter for indoor localization[J]. Sensors, 15(1): 715-732. |
19 | Chon J, Cha H.2011. Lifemap: a smartphone-based context provider for location-based services[J]. IEEE Pervasive Computing, 10(2): 58-67. |
20 | Fang Z, Tu W, Li Q, et al.2011. A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities[J]. Journal of Transport Geography, 19(4): 623-634. |
21 | Fang Z, Shaw S L, Tu W, et al.2012. Spatiotemporal analysis of critical transportation links based on time geographic concepts: a case study of critical bridges in Wuhan, China[J]. Journal of Transport Geography, 23: 44-59. |
22 | Gu Y, Lo A, Niemegeers I.2009. A survey of indoor positioning systems for wireless personal networks[J]. IEEE Communications Surveys & Tutorials, 11(1): 13-32. |
23 | Győrbíró N, Fábián Á, Hományi G.2009. An activity recognition system for mobile phones[J]. Mobile Networks and Applications, 14(1): 82-91. |
24 | Hanson S, Hanson P.1993. The geography of everyday life[J]. Advances in psychology, 96: 249-269. |
25 | Harle R.2013. A survey of indoor inertial positioning systems for pedestrians[J]. IEEE Communications Surveys & Tutorials, 15(3): 1281-1293. |
26 | Haverinen J, Kemppainen A.2009. Global indoor self-localization based on the ambient magnetic field[J]. Robotics and Autonomous Systems, 57(10): 1028-1035. |
27 | Hu W Y, Lu J L, Jiang S, et al.2013. WiBEST: a hybrid personal indoor positioning system[C]//IEEE wireless communications and networking conference. Shanghai, China: IEEE: 2149-2154. |
28 | Jahn J, Batzer U, Seitz J, et al.2010. Comparison and evaluation of acceleration based step length estimators for handheld devices[C]//International conference on indoor positioning and indoor navigation (IPIN). Zurich, Switzerland: IEEE: 1-6. |
29 | Jang H J, Kim J, Hwang D H.2007. Robust step detection method for pedestrian navigation systems[J]. Electronics Letters, 43(14): 749-751. |
30 | Jimenez A R, Seco F, Prieto C, et al.2009. A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU[C]//IEEE international symposium on intelligent signal processing. Budapest, Hungary: IEEE: 37-42. |
31 | Judd T.1997. A personal dead reckoning module[C]//ION GPS. Kansas City, MO: 47-51. |
32 | Kang W, Han Y.2014. SmartPDR: smartphone-based pedestrian dead reckoning for indoor localization[J]. IEEE Sensors Journal, 99: 1-11. |
33 | Kushki A, Plataniotis K N, Venetsanopoulos A N.2007. Kernel-based positioning in wireless local area networks[J]. IEEE Transactions on Mobile Computing, 6(6): 689-705. |
34 | Kwan M P.2002. Feminist visualization: re-envisioning GIS as a method in feminist geographic research[J]. Annals of the Association of American Geographers, 92(4): 645-661. |
35 | Kwan M P.2004. GIS methods in time-geographic research: geocomputation and geovisualization of human activity patterns[J]. Geografiska Annaler: Human Geography, 86(4): 267-280. |
36 | Lane N D, Miluzzo E, Lu H, et al.2010. A survey of mobile phone sensing[J]. IEEE Communications Magazine, 48(9): 140-150. |
37 | Lara O D, Labrador M A.2013. A survey on human activity recognition using wearable sensors[J]. IEEE Communications Surveys & Tutorials, 15(3): 1192-1209. |
38 | Li F, Zhao C, Ding G, et al.2012. A reliable and accurate indoor localization method using phone inertial sensors[C]//ACM conference on ubiquitous computing. Pittsburgh, PA: ACM: 421-430. |
39 | Lim M R, Huang R C, Wu A, et al.2007. Evaluation of the elderly patient with an abnormal gait[J]. Journal of the American Academy of Orthopaedic Surgeons, 15(2): 107-117. |
40 | Liu H, Darabi H, Banerjee P, et al.2007. Survey of wireless indoor positioning techniques and systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(6): 1067-1080. |
41 | Martínez E A, Cruz R, Favela J.2004. Estimating user location in a WLAN using back-propagation neural networks[M]//Gelbukh A. Advances in artificial intelligence: IBERAMIA 2004. Puebla, Mexico: Springer: 737-746. |
42 | Miller H J.2005. A measurement theory for time geography[J]. Geographical Analysis, 37(1): 17-45. |
43 | Mladenov M, Mock M.2009. A step counter service for java-enabled devices using a built-in accelerometer[C]//The 1st international workshop on context-aware middleware and services. Dublin, Ireland: ACM: 1-5. |
44 | Nerguizian C, Despins C, Affes S.2004. Indoor geolocation with received signal strength fingerprinting technique and neural networks[M]//De Souza J N, Dini P, Lorenz P. Telecommunications and Networking: ICT 2004. Fortaleza, Brazil: Springer: 866-875. |
45 | Prasithsangaree P, Krishnamurthy P, Chrysanthis P K.2002. On indoor position location with wireless LANs[C]//The 13th IEEE international symposium on personal, indoor and mobile radio communications. Lisbon, Portugal: IEEE: 720-724. |
46 | Rai A, Chintalapudi K K, Padmanabhan V N, et al.2012. Zee: zero-effort crowdsourcing for indoor localization[C]//The 18th annual international conference on mobile computing and networking. Istanbul, Turkey: ACM: 293-304. |
47 | Renaudin V, Susi M, Lachapelle G.2012. Step length estimation using handheld inertial sensors[J]. Sensors, 12(7): 8507-8525. |
48 | Roos T, Myllymäki P, Tirri H, et al.2002. A probabilistic approach to WLAN user location estimation[J]. International Journal of Wireless Information Networks, 9(3): 155-164. |
49 | Smailagic A, Kogan D.2002. Location sensing and privacy in a context-aware computing environment[J]. IEEE Wireless Communications, 9(5): 10-17. |
50 | Wang H, Sen S, Elgohary A, et al.2012. No need to war-drive: unsupervised indoor localization[C]//The 10th international conference on mobile systems, applications, and services. Low Wood Bay, UK: ACM: 197-210. |
51 | Weinberg H.2002. Using the ADXL202 in pedometer and personal navigation applications[Z]. IlliAN-602, Application Note, Analog Devices . |
52 | Woodman O, Harle R.2008. Pedestrian localisation for indoor environments[C]//The 10th international conference on ubiquitous computing. Seoul, Korea: ACM: 114-123. |
53 | Yang S, Li Q.2010. Ambulatory walking speed estimation under different step lengths and frequencies[C]//IEEE/ASME international conference on advanced intelligent mechatronics (AIM). Montreal, Canada: IEEE: 658-663. |
54 | Yang Z, Wu C, Z. Z, et al.2014. Mobility increases localizability: a survey on wireless indoor localization using inertial sensors, ACM computing surveys[J]. ACM Computing Surveys, 99: 1-23. |
55 | Yoon S, Lee K, Rhee I.2013. FM-based indoor localization via automatic fingerprint DB construction and matching[C]//The 11th annual international conference on mobile systems, applications, and services. Taipei, China: ACM: 207-220. |
56 | Zhou B, Li Q, Mao Q, et al.2014. Activity sequence-based indoor pedestrian localization using smartphones[J]. IEEE Transactions on Human-Machine Systems, 99: 1-13. |
57 | Zijlstra W, Hof A L.1997. Displacement of the pelvis during human walking: experimental data and model predictions[J]. Gait & Posture, 6(3): 249-262. |
[1] | 柴彦威, 李春江, 张艳. 社区生活圈的新时间地理学研究框架[J]. 地理科学进展, 2020, 39(12): 1961-1971. |
[2] | 舒华, 宋辞, 裴韬. 室内定位数据分析与应用研究进展[J]. 地理科学进展, 2016, 35(5): 580-588. |
[3] | 塔娜, 申悦, 柴彦威. 生活方式视角下的时空行为研究进展[J]. 地理科学进展, 2016, 35(10): 1279-1287. |
[4] | 曹阳, 甄峰. 基于智慧城市的可持续城市空间发展模型总体架构[J]. 地理科学进展, 2015, 34(4): 430-437. |
[5] | 王丰龙, 王冬根. 主观幸福感度量研究进展及其对智慧城市建设的启示[J]. 地理科学进展, 2015, 34(4): 482-493. |
[6] | 汪明峰, 顾成城. 上海智慧城市建设中公共WLAN热点的空间分析与检讨[J]. 地理科学进展, 2015, 34(4): 438-447. |
[7] | 赵勇, 张浩, 吴玉玲, 刘洋. 面向智慧城市建设的居民公共服务需求研究——以河北省石家庄市为例[J]. 地理科学进展, 2015, 34(4): 473-481. |
[8] | 刘勇, 张韶月, 柳林, 王先伟, 黄华兵. 智慧城市视角下城市洪涝模拟研究综述[J]. 地理科学进展, 2015, 34(4): 494-504. |
[9] | 甄峰, 席广亮, 秦萧. 基于地理视角的智慧城市规划与建设的理论思考[J]. 地理科学进展, 2015, 34(4): 402-409. |
|