Please wait a minute...
PROGRESS IN GEOGRAPHY
 
引用检索 快速检索 图表检索 高级检索
地理科学进展  2014, Vol. 33 Issue (10): 1424-1432    DOI: 10.11820/dlkxjz.2014.10.014
  乡村与农业发展 本期目录 | 过刊浏览 | 高级检索 |
长期施肥影响下亚热带红壤性水稻土团聚体组成及氮储量分布特征
李文军1,2, 彭保发1, 曾庆禹3, 王亚力1, 李逢喜4, 青志桃4
1. 湖南文理学院资源环境与旅游学院, 湖南 常德 415000;
2. 中国科学院南京土壤研究所土壤与农业可持续发展国家重点试验室, 南京 210008;
3. 宜宾市公安局, 四川 宜宾 644000;
4. 常德市土壤肥料工作站, 湖南 常德 415000
Long-term effects of fertilization on aggregates distribution and total nitrogen stock in a reddish paddy soil of subtropical China
LI Wenjun1,2, PENG Baofa1, ZENG Qingyu3, WANG Yali1, LI Fengxi4, QING Zhitao4
1. School of Resources and Environment and Tourism, Hunan University of Arts and Science, Changde 415000, Hunan, China;
2. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, CAS, Nanjing 210008, China;
3. Yibin Municipal Public Security Bureau, Yibin 644000, Sichan, China;
4. Changde Workstation of Soil and Fertilizer, Changde 415000, Hunan, China
全文: PDF(0 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 以亚热带典型红壤性水稻土为研究对象,利用干筛法研究长期单施化肥和化肥配施有机肥对耕作层和犁底层土壤团聚体组成及其全氮储量分布的影响。结果表明:>5 mm的块状结构是土壤团聚体的主要组分,其含量比例高达65.7%~83.4%;同时,该级团聚体中全氮储量占土壤总储量的比例亦高达63.1%~82.7%,是土壤全氮储量的主要载体。随土层加深,块状结构体比例增加,其他粒级团聚体含量降低。除<0.25 mm粒级外,团聚体中全氮含量随其粒径减小而增大,而全氮储量则呈降低趋势。施肥特别是化肥配施有机肥后同土层0.25~5 mm大团聚体含量显著增加。团聚体稳定性增强,2~5、0.5~2、0.25~0.5 mm团聚体及土壤中全氮含量和储量显著增加(P<0.05),新增氮储量主要向大团聚体,特别是2~5 mm团聚体中富集。施肥对团聚体组成及其全氮含量的影响随土层加深而减弱。与单施化肥相比较,化肥配施有机肥显著提升犁底层和全层土壤全氮储量(P<0.05),是更好的施肥模式,可在亚热带红壤性水稻土分布区推广应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文军
彭保发
曾庆禹
王亚力
李逢喜
青志桃
李育
王乃昂
李卓仑
张华安
周雪花
张成琦
关键词 长期施肥红壤性水稻土全氮储量团聚体亚热带    
Abstract:Fertilization greatly influences soil structure and nutrients accumulation in soil aggregates. In this study, the effects of long-term fertilization on aggregates composition and total nitrogen stock in a reddish paddy soil in the subtropical area of China were investigated. The fertilization treatments included CK (without fertilization), NK (nitrogen and potassium fertilizer application), NPK (balanced application of nitrogen, phosphorous, and potassium fertilizers), LOM (combined application of NPK and 30% organic manure fertilizers) and HOM (combined application of NPK and 60% organic manure fertilizers). Undisturbed soil samples in two layers were collected and then separated into five aggregate-size classes (>5 mm, 2~5 mm, 0.5~2 mm, 0.25~0.5 mm, <0.25 mm) by the dry sieving method. The amount and storage of nitrogen in each aggregate fraction were measured. The results indicate that the >5 mm blocky fraction was the dominant aggregates component, accounting for 65.7%~83.4% of dry soil mass in the two layers. It sequestrated 63.1%~82.7% of the total nitrogen in the soils and is considered the major carrier of soil nitrogen. Deeper in the soil, the content of >5 mm blocky fraction increased, while the percentages of the other aggregate-size groups decreased. For each soil layer, the contents of soil total nitrogen in different sizes of soil aggregates were significantly different and increased in the order of >5 mm, 2~5 mm, 0.5~2 mm, 0.25~0.5 mm, and decreased from 0.25~0.5 mm to <0.25 mm. However, the total nitrogen storage value first decreased and then increased and the minimum value occurred in the size group of 0.25~ 0.5 mm. Compared to the CK treatment, long-term fertilization was in favor of increasing the proportion of aggregates in the size group of 0.25~5 mm, while reducing the aggregate fractal dimensions. Moreover, the total soil nitrogen contents and storages in 0.25~5 mm aggregates and in the whole soils were increased significantly (P<0.05) after fertilizer application and the effects show an increasing sequence of NKP<0.05) promoted the total nitrogen storages in the plow pan and the whole soil layers when compared to single chemical fertilizer application and can be considered the best fertilization mode for improving soil structure and nitrogen fertility and that can be widely applied in the reddish paddy soil distrribution areas in subtropical China.
Key wordsaggregates    long-term fertilization    reddish paddy soil    subtropics    total soil nitrogen storage
收稿日期: 2014-05-01      出版日期: 2014-11-04
:  S153  
  S158.5  
基金资助:国家自然科学基金项目(41201297,41471114);土壤与农业可持续发展国家重点实验室开放基金项目(0812201239);湖南省教育厅科研项目(12C0827);湖南省科技厅计划项目(2011NK3047);湖南省产业经济学、应用化学重点建设学科项目(020205,081704)。
通讯作者: 彭保发(1962- ),男,湖南常德人,博士,教授,主要从事资源生态利用研究,E-mail:pengbaofa@163.com。     E-mail: pengbaofa@163.com
作者简介: 李文军(1982- ),男,山西阳泉人,博士,讲师,主要从事农田生态系统碳氮循环研究,E-mail:liwenjun1982@126.com。
引用本文:   
李文军, 彭保发, 曾庆禹, 王亚力, 李逢喜, 青志桃. 长期施肥影响下亚热带红壤性水稻土团聚体组成及氮储量分布特征[J]. 地理科学进展, 2014, 33(10): 1424-1432.
LI Wenjun, PENG Baofa, ZENG Qingyu, WANG Yali, LI Fengxi, QING Zhitao. Long-term effects of fertilization on aggregates distribution and total nitrogen stock in a reddish paddy soil of subtropical China. PROGRESS IN GEOGRAPHY, 2014, 33(10): 1424-1432.
链接本文:  
http://www.progressingeography.com/CN/10.11820/dlkxjz.2014.10.014      或      http://www.progressingeography.com/CN/Y2014/V33/I10/1424
程琴娟, 蔡强国, 马文军. 2008. 我国水土流失典型区土壤表 土结皮敏感性. 地理研究, 27(6): 1290-1298. [Cheng Q J, Cai Q G, Ma W J. 2008. Study on sensitivity of soil surface crust formation in typical regions with serious soil and water loss, China. Geographical Research, 27(6): 1290-1298.]
方华军, 杨学明, 张晓平, 等. 2004. 土壤侵蚀对农田中土壤 有机碳的影响. 地理科学进展, 23(2): 77-87. [Fang H J, Yang X M, Zhang X P, et al. 2004. Effects of soil erosion on soil organic carbon in cropland landscape. Progress in Geography, 23(2): 77-87.]
龚伟, 胡庭兴, 王景燕, 等. 2007. 川南天然常绿阔叶林人工 更新后土壤团粒结构的分形特征. 植物生态学报, 31 (1): 56-65. [Gong W, Hu T X, Wang J Y, et al. 2007. Study on fractal features of soil aggregate structure under natural evergreen broadleaved forest and artificial regeneration in Southern Sichuan Province. Journal of Plant Ecology, 31(1): 56-65.]
龚伟, 颜晓元, 蔡祖聪, 等. 2011. 长期施肥对小麦—玉米轮 作土壤微团聚体组成和分形特征的影响. 土壤学报, 48 (6): 1141-1148. [Gong W, Yan X Y, Cai Z C, et al. 2011. Effects of long-term fertilization on composition and frac-tal feature of soil micro-aggregates under a wheatmaize cropping system. Acta Pedologica Sinica, 48(6): 1141-1148.]
何淑勤, 郑子成. 2010. 不同土地利用方式下土壤团聚体的 分布及其有机碳含量的变化. 水土保持通报, 30(1): 7-10. [He S Q, Zheng Z C. 2010. Organic carbon change and distribution of soil aggregates under different land uses. Bulletin of Soil andWater Conservation, 30(1): 7-10.]
湖南省农业厅. 1989. 湖南土壤. 北京: 农业出版社. [Hunan Provincial Department of Agriculture. 1989. Soil of Hunan. Beijing, China: Agriculture Press.]
黄满湘, 章申, 张国梁, 等. 2003. 北京地区农田氮素养分随 地表径流流失机理. 地理学报, 58(1): 147-154. [Huang M X, Zhang S, Zhang G L, et al. 2003. Losses of nitrogen nutrient in overland flow from farmland in Beijing under simulated rainfall conditions. Acta Geographica Sinica, 58 (1): 147-154.]
冷延慧, 汪景宽, 李双异. 2008. 长期施肥对黑土团聚体分布 和碳储量变化的影响. 生态学杂志, 27(12): 2171-2177. [Leng Y H, Wang J K, Li S Y. 2008. Effects of long-term fertilization on aggregates size distribution and carbon stock in black soil. Chinese Journal of Ecology, 27(12): 2171-2177.]
李辉信, 袁颖红, 黄欠如, 等. 2006. 不同施肥处理对红壤水 稻土团聚体有机碳分布的影响. 土壤学报, 43(3): 422-429. [Li H X, Yuan Y H, Huang Q R, et al. 2006. Effects of fertilization on soil organic carbon distribution in various aggregates of red paddy soil. Acta Pedologica Sinica, 43(3): 422-429.]
李世清, 沈玉芳. 2010. 黄土高原土壤有机氮及其矿化. 北 京: 科学出版社. [Li S Q, Shen Y F. 2010. Soil organic nitrogen and its mineralization in Loess Plateat. Beijing, China: Science Press.]
李文军, 夏永秋, 杨晓云, 等. 2011. 施氮和肥料添加剂对水 稻产量、氮素吸收转运及利用的影响. 应用生态学报, 22(9): 2331-2336. [Li W J, Xia Y Q, Yang X Y, et al. 2011. Effects of applying nitrogen fertilizer and fertilizer additive on rice yield and rice plant nitrogen uptake, translocation, and utilization. Chinese Journal of Applied Ecology, 22(9): 2331-2336.]
李文昭, 周虎, 陈效民, 等. 2014. 基于同步辐射显微CT研究 不同施肥措施下水稻土团聚体微结构特征. 土壤学报, 51(1): 67-74. [Li W Z, Zhou H, Chen X M, et al. 2014. Characterization of aggregate microtructures of paddy soils under different patterns of fertilization with synchrotron radiation micro-CT. Acta Pedologica Sinica, 51(1): 67-74.]
梁音, 杨轩, 苏春丽, 等. 2009. 基于EI 的南方红壤区土壤侵 蚀县域差异与趋势分析. 土壤学报, 46(1): 24-29. [Liang Y, Yang X, Su C L, et al. 2009. EI-based analysis of variation and trends of soil erosion of red soil region on a county scale. Acta Pedologica Sinica, 46(1): 24-29.]
刘光崧. 1996. 土壤理化分析与剖面描述. 北京: 中国标准出 版社. [Liu G S. 1996. Soil physical-chemical analysis and its profiles description. Beijing, China: Standards Press of China.]
刘希玉, 王忠强, 张心昱, 等. 2013. 施肥对红壤水稻土团聚 体分布及其碳氮含量的影响. 生态学报, 33(16): 4949-4955. [Liu X Y, Wang Z Q, Zhang X Y, et al. 2013. Effects of long-term fertilization on aggregate dynamics and organic carbon and total nitrogen contents in a reddish paddy soil. Acta Ecologica Sinica, 33(16): 4949-4955.]
刘毅, 李世清, 李生秀. 2007. 黄土高原不同类型土壤团聚体中氮库分布的研究. 中国农业科学, 40(2): 304-313. [Liu Y, Li S Q, Li S X. 2007. Distribution of nitrogen pools in different sizes of Loess Plateau soil aggregates. Scientia Agricultura Sinica, 40(2): 304-313.]
祁迎春, 王益权, 刘军, 等. 2011. 不同土地利用方式土壤团 聚体组成及几种团聚体稳定性指标的比较. 农业工程 学报, 27(1): 340-347. [Qi Y C, Wang Y Q, Liu J, et al. 2011. Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index. Transactions of the CSAE, 27(1): 340-347.]
孙鸿烈, 陈宜瑜, 于贵瑞, 等. 2014. 国际重大研究计划与中 国生态系统研究展望: 中国生态大讲堂百期学术演讲 暨2014 年春季研讨会评述. 地理科学进展, 33(7): 865-873. [Sun H L, Chen Y Y, Yu G R, et al. 2014. Major international progress and prospects of ecosystem research in China: a review of the 100th lecture series/spring 2014 symposium of China Ecological Forum. Progress in Geography, 33(7): 865-873.]
王亮, 孙向阳, 刘克锋. 2012. 不同施肥条件下微生物对棕壤 团聚体和碳分布的影响. 农业机械学报, 43(3): 57-61, 82. [Wang L, Sun X Y, Liu K F. 2012. Effects of microbial and carbon distribution in brown soil aggregates under different fertilization. Transactions of the Chinese Society for Agricultural Machinery, 43(3): 57-61, 82.]
王珊娜. 2012. 长期施肥下我国典型红壤性水稻土肥力演变 特征与持续利用[D]
. 北京: 中国农业科学院. [Wang Shanna. 2012. Evolotion characteristics of reddish paddy soil fertility under long-term fertilization and its sustainable utilization in southern China. Beijing: Chinese Academy of Agriultural Sciences.]
熊毅, 姚贤良, 樊润威. 1965. 土壤结构的性态研究. 土壤学 报, 13(4): 411-417. [Xiong Y, Yao X L, Fan R W. 1965. Physical and morphological studies on soil structure. Acta Pedologica Sinica, 13(4): 411-417.]
徐爽, 王益权. 2014. 不同类型土壤团聚体化学稳定性分析. 农业机械学报, 45(4): 173-178. [Xu S, Wang Y Q. 2014. Chemical stability of aggregates under different types of soil. Transactions of the Chinese Society for Agricultural Machinery, 45(4): 173-178.]
中国科学院红壤生态试验站. 1992. 红壤生态系统研究: 第1 集. 北京: 科学出版社. [Ecological Experiment Station of Red Earth, Chinese Academy of Sciences. 1992. Research on red earth ecosystem: proceeding one. Beijing, China: Science Press.]
Aoyama M, Angers D A, N'Dayegamiye A. 1999. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure apploation. Canadian Journal of Soil Science, 79(2): 295-302.
Arrouays D, Vion I, Kicin J L. 1995. Spatial analysis and modeling of topsoil carbon storage in temperate forest humic loamy soils of France. Soil Science, 159(3): 194-198.
Bronick C J, Lal R. 2005. Soil structure and management: a review. Geoderma, 124(1-2): 3-22.
Chu H Y, Lin X G, Takeshi F, et al. 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry, 39(11): 2971-2976.
Covaleda S, Pajares S, Gallardo J F, et al. 2006. Short-term changes in C and N distribution in soil particle size fractions induced by agricultural practices in a cultivated volcanic soil from Mexico. Organic Geochemistry, 37(12): 1943-1948.
Diacono M, Montemrro F. 2010. Long-term effects of organic amendments on soil fertility:a review. Agronomy for Sustainable Development, 30(2): 401-422.
Dong WY, Zhang X Y, Wang H M, et al. 2012. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of Southern China. Plos One, 7(9): 1-9.
Guo J H, Liu X J, Zhang Y, et al. 2010. Significant acidification in major Chinese croplands. Science, 327: 1008-1010.
Katz A J, Thompson A H. 1985. Fractal sandstone pores: implications for conductivity and pore formation. Physical Review Letters, 54(12): 1325-1328.
Pinheiro E F M, Pereira M G, Anjos L H C. 2004. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a red latosol from Brazil. Soil and Tillage Research, 77(1): 79-84.
Rasool R, Kukal S S, Hira G S. 2007. Soil physical fertility and crop performance as affected by long term application of FYM and inorganic fertilizers in rice-wheat system. Soil and Tillage Research, 96 (1-2): 64-72.
Six J, Elliott E T, Paustian K. 2000a. Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64(3): 1042-1049.
Six J, Elliott E T, Paustian K. 2000b. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32(14): 2099-2103.
Tisdall J M, Oades J M. 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33(2): 141-163.
Tyler S W, Wheatcraft S W. 1992. Fractal scaling of soil particle-size distributions: analysis and limitation. Soil Science Society of America Journal, 56(2): 362-369.
Wang W, Chen W C, Wang K R, et al. 2011. Effects of longterm fertilization on the distribution of carbon, nitrogen and phosphorus in water-stable aggregates in paddy soil. Agricultural Sciences in China, 10(12): 1932-1940.
[1] 柯新利, 刘曼, 邓祥征. 基于遥感反演参数与双约束空间聚类算法的湖泊营养物生态分区[J]. 地理科学进展, 2012, 31(3): 315-323.
[2] 郑永宏, 张永, 邵雪梅, 尹志勇, 张津. 大别山地区黄山松和油松树轮宽度的气候意义[J]. 地理科学进展, 2012, (1): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 地理科学进展
技术支持: 北京玛格泰克科技发展有限公司