鲍士旦. 2005. 土壤农化分析. 北京: 中国农业出版社.[Bao S D. 2005. Analysis method for soil agro-chemistry. Beijing, China: China Agriculture Press.] 陈锋锐, 秦奋, 李熙, 等. 2012. 基于多元地统计的土壤有机质含量空间格局反演. 农业工程学报, 28(20): 188-194.[Chen F R, Qin F, Li X, et al. 2012. Inversion for spatial distribution of soil organic matter content based on multivariate geostatistics. Transactions of the Chinese Society of Agricultural Engineering, 28(20): 188-194.] 范胜龙, 黄炎和, 林金石. 2011. 表征土壤有机碳区域分布的优化空间插值模型研究: 以福建省龙海市为例. 水土保持研究, 18(6): 1-5.[Fan S L, Huang Y H, Lin J S. 2011. The optimized interpolation models and its relationship with soil sampling density on detecting spatial variability of farmland soil organic carbon: a case study in Longhai City, Fujian Province. Research of Soil andWater Conservation, 18(6): 1-5.] 顾成军, 史学正, 于东升, 等. 2013. 省域土壤有机碳空间分布的主控因子: 土壤类型与土地利用比较. 土壤学报, 50(3): 425-432.[Gu C J, Shi X Z, Yu D S, et al. 2013. Main factor controlling SOC spatial distribution at the province scale as affected by soil type and land use. Acta Pedologica Sinica, 50(3): 425-432.] 郭龙, 张海涛, 陈家赢, 等. 2012. 基于协同克里格插值和地理加权回归模型的土壤属性空间预测比较. 土壤学报, 49 (5): 1037-1042.[Guo L, Zhang H T, Chen J Y, et al. 2012. Comparison between co-kriging model and geographically weighted regression model in spatial prediction of soil attributes. Acta Pedologica Sinica, 49(5): 1037-1042.] 胡玉福, 邓良基, 张世熔, 等. 2006. 川中丘陵区不同利用方式的土壤养分特征研究. 水土保持学报, 20(6): 75-78.[Hu Y F, Deng L J, Zhang S R, et al. 2006. Study on nutrient characteristics of soils under different land utilization types in middle part of Sichuan Basin. Journal of Soil andWater Conservation, 20(6): 75-78.] 李亨伟, 胡玉福, 邓良基, 等. 2009. 川中丘陵区紫色土微地形下有机质空间变异特征. 土壤通报, 40(3): 552-554.[Li H W, Hu Y F, Deng L J, et al. 2009. Spatial variability of soil organic matter in micro-topography of mid-Sichuan hilly region. Chinese Journal of Soil Science, 40(3): 552-554.] 李启权, 王昌全, 张文江, 等. 2012. 丘陵区土壤有机质空间分布预测的神经网络方法. 农业环境科学学报, 31(12): 2451-2458.[Li Q Q, Wang C Q, Zhang W J, et al. 2012. Predict the spatial distribution of soil organic matter for a hilly region with radial basis function netural network. Journal of Agro-Environment Science, 31(12): 2451-2458.] 李启权, 王昌全, 张文江, 等. 2013. 基于神经网络模型和地统计学方法的土壤养分空间分布预测. 应用生态学报, 24(2): 459-466.[Li Q Q, Wang C Q, Zhang W J, et al. 2013. Prediction of soil nutrients spatial distribution based on neural network model combined with goestatistics. Chinese Journal of Applied Ecology, 24(2): 459-466.] 连纲, 郭旭东, 傅伯杰, 等. 2006. 黄土丘陵沟壑区县域土壤有机质空间分布特征及预测. 地理科学进展, 25(2): 112-122.[Lian G, Guo X D, Fu B J, et al. 2006. Spatial variability and prediction of soil organic matter at county scale in the Loess Plateau. Progress in Geography, 25(2): 112-122.] 邱乐丰, 杨超, 林芬芳, 等. 2010. 基于环境辅助变量的拔山茶园土壤肥力空间预测. 应用生态学报, 21(12): 3099-3104.[Qiu L F, Yang C, Lin F F, et al. 2010. Spatial pattern of soil fertility in Bashan tea garden: a prediction based on environmental auxiliary variables. Chinese Journal of Applied Ecology, 21(12): 3099-3104.] 王情, 刘雪华, 吕宝磊. 2013. 基于SPOT-VGT数据的流域植被覆盖动态变化及空间格局特征: 以淮河流域为例. 地理科学进展, 32(2): 270-277.[Wang Q, Liu X H, Lv B L. 2013. Dynamic changes and spatial patterns of vegetation cover in a river basin based on SPOT-VGT data: a case study in the Huaihe River Basin. Progress in Geography, 32(2): 270-277.] 杨琳, 朱阿兴, 秦承志, 等. 2010. 基于典型点的目的性采样设计方法及其在土壤制图中的应用. 地理科学进展, 29 (3): 279-286.[Yang L, Zhu A X, Qin C Z, et al. 2010. A purposive sampling design method based on typical points and its application in soil mapping. Progress in Geography, 29(3): 279-286.] 于海达, 杨秀春, 徐斌, 等. 2012. 草原植被长势遥感监测研究进展. 地理科学进展, 31(7): 885-894.[Yu H D, Yang X C, Xu B, et al. 2012. The progress of remote sensing monitoring for grassland vegetation growth. Progress in Geography, 31(7): 885-894.] 张淑杰, 朱阿兴, 刘京, 等. 2012. 整合已有土壤样点的数字土壤制图补样方案. 地理科学进展, 31(10): 1318-1325.[Zhang S J, Zhu A X, Liu J, et al. 2012. An integrative sampling scheme for digital soil mapping. Progress in Geography, 31(10): 1318-1325.] 赵永存, 史学正, 于东升, 等. 2005. 不同方法预测河北省土壤有机碳密度空间分布特征的研究. 土壤学报, 42(3): 379-385.[Zhao Y C, Shi X Z, Yu D S, et al. 2005. Different methods for prediction of spatial patterns of soil organic carbon density in Hebei Province, China. Acta Pedologica Sinica, 42(3): 379-385.] Erzin Y, Rao B H, Singh D N. 2008. Artificial neural network models for predicting soil thermal resistivity. International Journal of Thermal Sciences, 47(10): 1347-1358. Li Q Q, Yue T X, Wang C Q, et al. 2013. Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach. Catena, 104 (1): 210-218. McBratney A B, Mendonca S M L, Minasny B. 2003. On digital soil mapping. Geoderma, 17(1-2): 3-52. McSweeney K, Slater B K, Hammer R D, et al. 1994. Towards a new framework for modeling the soil-landscape continuum//Amundson R G, Harden J W, Singer M J, et al. Factors of soil formation: a fiftieth anniversary retrospective. Madison, WI: Soil Science Society of America: 127-145. Meersmans J, De R F, Canters F, et al. 2008. A multiple regression approach to assess the spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma, 143(1-2): 1-13. Meersmans J, Van W B, Goidts E, et al. 2011. Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands, 1960-2006. Global Change Biology, 17(1): 466-479. Phachomphon K, Dlamini P, Chaplot V. 2010. Estimating carbon stocks at a regional level using soil information and easily accessible auxiliary variables. Geoderma, 155 (3-4): 372-380. Sculla P, Franklina J, Chadwickb O A, et al. 2003. Predictive soil mapping: a review. Progress in Physical Geography, 27(2): 171-197. Shi W J, Liu J Y, Du Z P, et al. 2011. Surface modelling of soil properties based on land use information. Geoderma, 162 (3-4): 347-357. Sumfleth K, Duttmann R. 2008. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecological Indicators, 8(5): 485-501. Thompson J A, Kolka R K. 2005. Soil carbon storage estimation in a forested watershed using quantitative soil landscape modeling. Soil Science Society of America Journal, 69(4): 1086-1093. Wang H J, Shi X Z, Yu D S, et al. 2009. Factors determining soil nutrient distribution in a small-scaled watershed in the purple soil region of Sichuan Province, China. Soil & Tillage Research, 105(2): 300-306. Zhang S W, Huang Y F, Shen C Y, et al. 2012. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma, 171 (1): 35-43. Zhao Z Y, Chow T L, Rees H W, et al. 2009. Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture, 65(1): 36-48. Zhao Z, Yang Q, Benoy G, et al. 2010. Using artificial neural network models to produce soil organic carbon content distribution maps across landscapes. Canadian Journal of Soil Science, 90(1): 75-87. Zou P, Yang J S, Fu J R, et al. 2010. Artificial neural network and time series models for predicting soil salt and water content. Agricultural Water Management, 97(12): 2009-2019. |