地理科学进展 ›› 2013, Vol. 32 ›› Issue (2): 278-287.doi: 10.11820/dlkxjz.2013.02.014
薛永刚1,2, 龚平1, 王小萍1, 姚檀栋1
收稿日期:
2012-05-01
修回日期:
2012-11-01
出版日期:
2013-02-25
发布日期:
2013-02-07
通讯作者:
王小萍(1976-),女,博士,副研究员。主要研究方向为青藏高原环境污染。E-mail:wangxp@itpcas.ac.cn
作者简介:
薛永刚(1987-),男,博士研究生,主要从事持久性有机污染物(POPs)迁移、循环的研究。E-mail:xueyg@itpcas.ac.cn
基金资助:
国家自然科学基金项目(41071321)。
XUE Yonggang1,2, GONG Ping1, WANG Xiaoping1, YAO Tandong1
Received:
2012-05-01
Revised:
2012-11-01
Online:
2013-02-25
Published:
2013-02-07
摘要: 持久性有机污染物(POPs)具有环境持久性和半挥发性, 可以在区域及全球范围内传输和分布。森林植被和林下土壤富含有机质, 森林生态系统因此成为POPs主要的储存库之一。植被叶片可快速吸附大气POPs, 并通过叶片凋落、雨水冲刷和干沉降等过程加强或加速大气POPs 向地面的沉降, 并使森林土壤成为POPs 的“汇”, 从而形成所谓的“森林过滤效应”, 进而影响POPs 在全球的分布。进入森林的POPs 在森林生态系统中将经历一系列的环境过程。本文简要介绍了森林过滤效应的特征和影响因素, 综述了叶片对大气POPs 的吸附、叶片凋落和干湿沉降、POPs 在土壤中的迁移和损失等3 个主要环境过程的研究进展, 报道了松针、树皮和苔藓作为被动采样器反映的森林POPs空间分布趋势。最后, 提出了森林POPs研究中亟待解决的科学问题, 并指出未来中国森林POPs研究的可能方向。
薛永刚, 龚平, 王小萍, 姚檀栋. 持久性有机污染物在森林生态系统中的环境行为研究[J]. 地理科学进展, 2013, 32(2): 278-287.
XUE Yonggang, GONG Ping, WANG Xiaoping, YAO Tandong. Environmental behaviors of the persistent organic pollutants in forest ecosystem[J]. PROGRESS IN GEOGRAPHY, 2013, 32(2): 278-287.
[1] Barber J L, Thomas G O, Kerstiens G, et al. 2002a. Air-sideand plant-side resistances influence the uptake of airborne PCBs by evergreen plants. Environmental Science& Technology, 36(15): 3224-3229.[2] Barber J L, Kurt P B, Thomas G O, et al. 2002b. Investigationinto the importance of the stomatal pathway in the exchangeof PCBs between air and plants. Environmental Science & Technology, 36(20): 4282-4287.[3] Barber J L, Thomas G O, Kerstiens G, et al. 2003. Study ofplant-air transfer of PCBs from an evergreen shrub: Implicationsfor mechanisms and modeling. Environmental Science & Technology, 37(17): 3838-3844.[4] Barber J L, Thomas G O, Kerstiens G, et al. 2004. Current issuesand uncertainties in the measurement and modellingof air-vegetation exchange and within-plant processing of POPs. Environmental Pollution, 128(1-2): 99-138.[5] Bellis D, Ma R, Bramall N, et al. 2001. Airborne uranium contamination: As revealed through elemental and isotopicanalysis of tree bark. Environmental Pollution, 114(3):383-387.[6] Bergknut M, Wiberg K, Klaminder J. 2011. Vertical and lateralredistribution of POPs in soils developed along a hydrologicalgradient. Environmental Science & Technology,45(24): 10378-10384.[7] Borja J, Taleon D M, Auresenia J, et al. 2005. Polychlorinatedbiphenyls and their biodegradation. Process Biochemistry,40(6): 1999-2013.[8] Brorström-Lundén E, Löfgren C. 1998. Atmospheric fluxes ofpersistent semivolatile organic pollutants to a forest ecologicalsystem at the Swedish west coast and accumulationin spruce needles. Environmental Pollution, 102(1):139-149.[9] Choi S D, Staebler R M, Li H, et al. 2008. Depletion of gaseouspolycyclic aromatic hydrocarbons by a forest canopy. Atmospheric Chemistry and Physics, 8(14): 4105-4113.[10] Clarkson P J, Larrazabal-Moya D, Staton I, et al. 2002. Theuse of tree bark as a passive sampler for polychlorinateddibenzo-p-dioxins and furans. International Journal of Environmental Analytical Chemistry, 82(11-12): 843-850.[11] Dalla Valle M, Dachs J, Sweetman A J, et al. 2004. Maximumreservoir capacity of vegetation for persistent organic pollutants: Implications for global cycling. Global Biogeochemical Cycles, 18(4). DOI: 10.1029/2004GB002334.[12] Davidson D A, Wilkinson A C, Blais J M, et al. 2002. Orographiccold-trapping of persistent organic pollutants byvegetation in mountains of western Canada. Environmental Science & Technology, 37(2): 209-215.[13] Davidson D A, Wilkinson A C, Kimpe L E, et al. 2004. Persistentorganic pollutants in air and vegetation from the Canadian Rocky Mountains. Environmental Toxicology and Chemistry, 23(3): 540-549.[14] Eriksson G, Jensen S, Kylin H, et al. 1989. The pine needle asa monitor of atmospheric pollution. Nature, 341: 42-44.[15] Evenset A, Christensen G N, Skotvold T, et al. 2004. A comparisonof organic contaminants in two high Arctic lakeecosystems, Bjornoya (Bear Island), Norway. Science ofthe Total Environment, 318(1-3): 125-141.[16] Gao X Z. 1987. Botany. Beijing, China: Higher Education Press. [高信曾. 1987. 植物学. 北京: 高等教育出版社.][17] Ghirardello D, Morselli M, Semplice M, et al. 2010. A dynamicmodel of the fate of organic chemicals in a multilayeredair/soil system: Development and illustrative application. Environmental Science & Technology, 44(23):9010-9017.[18] Gouin T, Mackay D, Jones K C, et al. 2004. Evidence for the"grasshopper" effect and fractionation during long-rangeatmospheric transport of organic contaminants. Environmental Pollution, 128(1-2): 139-148.[19] Holoubek I, Dusek L, Sanka M, et al. 2009. Soil burdens ofpersistent organic pollutants: Their levels, fate and risk. Part I. Variation of concentration ranges according to differentsoil uses and locations. Environmental Pollution,157(12): 3207-3217.[20] Horstmann M, McLachlan M S. 1998. Atmospheric depositionof semivolatile organic compounds to two forest canopies. Atmospheric Environment, 32(10): 1799-1809.[21] Howsam M, Jones K C, Ineson P. 2001. Dynamics of PAH deposition,cycling and storage in a mixed-deciduous (Quercus-Fraxinus) woodland ecosystem. Environmental Pollution,113(2): 163-176.[22] Iozza S, Schmid P, Oehme M, et al. 2009. Altitude profiles oftotal chlorinated paraffins in humus and spruce needlesfrom the Alps (MONARPOP). Environmental Pollution,157(12): 3225-3231.[23] Ishihara M I, Hiura T. 2011. Modeling leaf area index from littercollection and tree data in a deciduous broadleaf forest. Agricultural and Forest Meteorology, 151(7): 1016-1022.[24] Jaward F M, Di Guardo A, Nizzetto L, et al. 2005. PCBs andselected organochlorine compounds in Italian mountainair: The influence of altitude and forest ecosystem type. Environmental Science&Technology, 39(10): 3455-3463.[25] Kah M, Beulke S, Brown C D. 2007. Factors influencing degradationof pesticides in soil. Journal of Agricultural and Food Chemistry, 55(11): 4487-4492.[26] Kallenborn R, Oehme M, Wynn-Williams D D, et al. 1998. Ambient air levels and atmospheric long-range transportof persistent organochlorines to Signy Island, Antarctica. Science of the Total Environment, 220(2-3): 167-180.[27] Kelly B C, Gobas F A P C. 2000. Bioaccumulation of persistentorganic pollutants in dichen-caribou-wolf foodchains of Canada's central and western arctic. Environmental Science & Technology, 35(2): 325-334.[28] Kim E J, Oh J E, Chang Y S. 2003. Effects of forest fire on thelevel and distribution of PCDD/Fs and PAHs in soil. Scienceof the Total Environment, 311(1-3): 177-189.[29] Kirchner M, Faus-Kessler T, Jakobi G, et al. 2009. Vertical distributionof organochlorine pesticides in humus along Alpinealtitudinal profiles in relation to ambiental parameters. Environmental Pollution, 157(12): 3238-3247.[30] Klanova J, Cupr P, Barakova D, et al. 2009. Can pine needlesindicate trends in the air pollution levels at remote sites? Environmental Pollution, 157(12): 3248-3254.[31] Klasmeier J, Matthies M, Macleod M, et al. 2005. Applicationof multimedia models for screening assessment oflong-range transport potential and overall persistence. Environmental Science & Technology, 40(1): 53-60.[32] Koblizková M, R?zicková P, Cupr P, et al. 2009. Soil burdensof persistent organic pollutants: Their levels, fate, andrisks. Part IV. Quantification of volatilization fluxes of organochlorinepesticides and polychlorinated biphenylsfrom contaminated soil surfaces. Environmental Science& Technology, 43(10): 3588-3595.[33] Komp P, McLachlan M S. 1997a. Interspecies variability ofthe plant/air partitioning of polychlorinated biphenyls. Environmental Science & Technology, 31(10):2944-2948.[34] Komp P, McLachlan M S. 1997b. Influence of temperature onthe plant/air partitioning of semivolatile organic compounds. Environmental Science & Technology, 31(3):886-890.[35] Kylin H, Sjodin A. 2003. Accumulation of airborne hexachlorocyclohexanesand DDT in pine needles. Environmental Science & Technology, 37(11): 2350-2355.[36] Li J, Zhu T, Wang F, et al. 2006. Observation of organochlorinepesticides in the air of the Mt. Everest region. Ecotoxicologyand Environmental Safety, 63(1): 33-41.[37] Li Y G, Chen B L, Zhu L Z. 2010. Single-solute and bi-solutesorption of phenanthrene and pyrene onto pine needle cuticularfractions. Environmental Pollution, 158(7):2478-2484.[38] Lim T B, Xu R, Tan B, et al. 2006. Persistent organic pollutantsin moss as bioindicators of atmospheric pollution in Singapore. Chemosphere, 64(4): 596-602.[39] Lin H, Tao S, Zuo Q, et al. 2007. Uptake of polycyclic aromatichydrocarbons by maize plants. Environmental Pollution,148(2): 614-619.[40] Liu X, Zhang G, Jones K C, et al. 2005. Compositional fractionationof polycyclic aromatic hydrocarbons (PAHs) inmosses (Hypnum plumaeformae WILS.) from the northernslope of Nanling Mountains, South China. Atmospheric Environment, 39(30): 5490-5499.[41] Mariussen E, Steinnes E, Breivik K, et al. 2008. Spatial patternsof polybrominated diphenyl ethers (PBDEs) inmosses, herbivores and a carnivore from the norwegianterrestrial biota. Science of the Total Environment, 404(1): 162-170.[42] McDonald J G, Hites R A. 2002. Radial dilution model for thedistribution of toxaphene in the United States and Canadaon the basis of measured concentrations in tree bark. Environmental Science & Technology, 37(3): 475-481.[43] McLachlan M S, Czub G, Wania F. 2002. The influence of verticalsorbed phase transport on the fate of organic chemicalsin surface soils. Environmental Science & Technology,36(22): 4860-4867.[44] McLachlan M S, Horstmann M. 1998. Forests as filters of airborneorganic pollutants: A model. Environmental Science& Technology, 32(3): 413-420.[45] McLachlan M S. 1999. Framework for the interpretation ofmeasurements of SOCs in plants. Environmental Science& Technology, 33(11): 1799-1804.[46] Moeckel C, Nizzetto L, Di Guardo A, et al. 2008a. Persistentorganic pollutants in boreal and montane soil profiles: Distribution, evidence of processes and implications forglobal cycling. Environmental Science & Technology, 42(22): 8374-8380.[47] Moeckel C, Thomas G O, Barber J L, et al. 2008b. Uptakeanxd storage of PCBs by plant cuticles. Environmental Science & Technology, 42(1): 100-105.[48] Moeckel C, Nizzetto L, Strandberg B, et al. 2009. Air-borealforest transfer and processing of polychlorinated biphenyls. Environmental Science & Technology, 43(14):5282-5289.[49] Monteith J L, Unsworth M. 1992. Principles of Environmental Physics. London: Academic Press.[50] Nizzetto L, Cassani C, Di Guardo A. 2006. Deposition of PCBs in mountains: The forest filter effect of differentforest ecosystem types. Ecotoxicology and Environmental Safety, 63(1): 75-83.[51] Nizzetto L, Jarvis A, Brivio P A, et al. 2008a. Seasonality ofthe air-forest canopy exchange of persistent organic pollutants. Environmental Science & Technology, 42(23):8778-8783.[52] Nizzetto L, Pastore C, Liu X, et al. 2008b. Accumulation parametersand seasonal trends for PCBs in temperate andboreal forest plant species. Environmental Science & Technology, 42(16): 5911-5916.[53] Nizzetto L, Macleod M, Borgå K, et al. 2010. Past, present,and future controls on levels of persistent organic pollutantsin the global environment. Environmental Science & Technology, 44(17): 6526-6531.[54] Nizzetto L, Stroppiana D, Brivio P A, et al. 2007. Tracing thefate of PCBs in forest ecosystems. Journal of Environmental Monitoring, 9(6): 542-549.[55] Ockenden W A, Steinnes E, Parker C, et al. 1998. Observationson persistent organic pollutants in plants: Implicationsfor their use as passive air samplers and for POP cycling. Environmental Science & Technology, 32(18):2721-2726.[56] Offenthaler I, Bassan R, Belis C, et al. 2009. PCDD/F and PCB in spruce forests of the Alps. Environmental Pollution,157(12): 3280-3289.[57] Qiu X, Hites R A. 2007. Dechlorane plus and other flame retardantsin tree bark from the northeastern United States. Environmental Science & Technology, 42(1): 31-36.[58] Salamova A, Hites R A. 2010. Evaluation of tree bark as a passiveatmospheric sampler for flame retardants, PCBs, andorganochlorine pesticides. Environmental Science & Technology, 44(16): 6196-6201.[59] Scheringer M, Salzmann M, Stroebe M, et al. 2004. Long-range transport and global fractionation of POPs: Insights from multimedia modeling studies. Environmental Pollution, 128(1-2): 177-188.[60] Schrlau J E, Geiser L, Hageman K J, et al. 2011. Comparison oflichen, conifer needles, passive air sampling devices, andsnowpack as passive sampling media to measure semi-volatileorganic compounds in remote atmospheres. Environmental Science &Technology, 45(24): 10354-10361 Schulz H, Popp P, Huhn G, et al. 1999. Biomonitoring of airborneinorganic and organic pollutants by means of pinetree barks. I. Temporal and spatial variations. Science ofthe Total Environment, 232(1-2): 49-58.[61] Simonich S L, Hites R A. 1997. Relationships between socioeconomicindicators and concentrations of organochlorinepesticides in tree bark. Environmental Science & Technology, 31(4): 999-1003.[62] Singh N. 2004. Factors affecting triadimefon degradation insoils. Journal of Agricultural and Food Chemistry, 53(1):70-75.[63] Spencer W F, Jury WA, Farmer W J. 1984. Importance of volatilizationas a pathway for pesticide loss from forestsoils//Garner W Y, Harvey J. Chemical and Biological Controls in Forestry. California: American Chemical Society:193-210.[64] St Amand A D, Mayer P M, Blais J M. 2007. Modeling atmosphericvegetation uptake of PBDEs using field measurements. Environmental Science & Technology, 41(12):4234-4239.[65] St Amand A D, Mayer P M, Blais J M. 2009. Modeling PAHuptake by vegetation from the air using field measurements. Atmospheric Environment, 43(28): 4283-4288.[66] UNEP, 2004. Stockholm convention on persistent organic pollutants(POPs) [EB/OL]. 2006-10-01[2012-05-01]. http://www.pops.int/documents/meetings/gmptwg/meetingdocs/GMP-TWG-1_5.pdf.[67] Su Y S, Wania F, Lei Y D, et al. 2007. Temperature dependenceof the air concentrations of polychlorinated biphenylsand polybrominated diphenyl ethers in a forest and aclearing. Environmental Science & Technology, 41(13):4655-4661.[68] Su Y S, Wania F. 2005. Does the forest filter effect preventsemivolatile organic compounds from reaching the Arctic? Environmental Science&Technology, 39(18): 7185-7193.[69] Thomas G, Sweetman A J, Ockenden W A, et al. 1998. Air-pasture transfer of PCBs. Environmental Science & Technology, 32(7): 936-942.[70] Tremolada P, Burnett V, Calamari D, et al. 1996. Spatialdistributionof PAHs in the U.K. atmosphere using pine needles. Environmental Science & Technology, 30(12):3570-3577.[71] Vermeulen F, Covaci A, D'Havé H, et al. 2010. Accumulationof background levels of persistent organochlorine and organobrominepollutants through the soil-earthworm-hedgehog food chain. Environment International,36(7): 721-727.[72] Wagrowski D M, Hites R A. 2000. Insights into the global distributionof polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Science & Technology, 34(14):2952-2958.[73] Wang Q Q, Zhao Y, Yan D, et al. 2004. Historical records ofairborne polycyclic aromatic hydrocarbons by analyzingdated corks of the bark pocket in a longpetiole beechtree. Environmental Science & Technology, 38(18):4739-4744.[74] Wang X P, Gong P, Yao T D. 2008. Progress about the researchof atmosphere persistent organic pollutants in remoteareas. Environmental Science, 29(2): 273-282. [ 王小萍, 龚平, 姚檀栋. 2008. 偏远地区大气中持久性有机污染物研究进展. 环境科学, 29(2): 273-283.][75] Wang X P, Gong P, Yao T D, et al. 2010a. Passive air samplingof organochlorine pesticides, polychlorinated biphenyls,and polybrominated diphenyl ethers across the tibetanplateau. Environmental Science & Technology, 44(8):2988-2993.[76] Wang X P, Gong P, Zhang Q, et al. 2010b. Impact of climatefluctuations on deposition of DDT and hexachlorocyclohexanein mountain glaciers: Evidence from ice core records. Environmental Pollution, 158(2): 375-380.[77] Wang X P, Yao T D, Cong Z Y, et al. 2006. Gradient distributionof persistent organic contaminants along northernslope of central-Himalayas, China. Science of the Total Environment, 372(1): 193-202.[78] Wania F, McLachlan M S. 2001. Estimating the influence offorests on the overall fate of semivolatile organic compoundsusing a multimedia fate model. Environmental Science & Technology, 35(3): 582-590.[79] Wegmann F, Scheringer M, Moller M, et al. 2004. Influenceof vegetation on the environmental partitioning of DDTin two global multimedia models. Environmental Science& Technology, 38(5): 1505-1512.[80] Weiss P, Lorbeer G, Scharf S. 1998. Persistent organic pollutantsin remote Austrian forests: Altitude-related results. Environmental Science and Pollution Research, (S1): 46-52.[81] Wenzel K D, Manz M, Hubert A, et al. 2002. Fate of POPs(DDX, HCHs, PCBs) in upper soil layers of pine forests. Science of the Total Environment, 286(1-3): 143-154.[82] Wild E, Dent J, Thomas G O, et al. 2005. Visualizing the Air-to-leaf transfer and within-leaf movement and distributionof phenanthrene: Further studies utilizing two-photonexcitation microscopy. Environmental Science & Technology, 40(3): 907-916.[83] Yang R Q, Yao T D, Xu B Q, et al. 2008. Distribution of organochlorinepesticides (OCPs) in conifer needles in thesoutheast Tibetan Plateau. Environmental Pollution, 153(1): 92-100.[84] Yates S R, Papiernik S K, Spencer W F. 2005. Predicting pesticidevolatilization from bare soils//Clark J M, Ohkawa H. Environmental Fate and Safety Management of Agrochemicals. Washington:American Chemical Society: 101-110.[85] Zhao Y, Yang L, Wang Q. 2008. Modeling persistent organicpollutant (POP) partitioning between tree bark and airand its application to spatial monitoring of atmospheric POPs in mainland china. Environmental Science & Technology,42(16): 6046-6051. |
[1] | 冯应斌, 龙花楼. 中国山区乡村聚落空间重构研究进展与展望[J]. 地理科学进展, 2020, 39(5): 866-879. |
[2] | 唐承丽, 郭夏爽, 周国华, 吴佳敏, 陈伟杨. 长江中游城市群创新平台空间分布及其影响因素分析[J]. 地理科学进展, 2020, 39(4): 531-541. |
[3] | 赵丽元, 韦佳伶. 城市建设对暴雨内涝空间分布的影响研究——以武汉市主城区为例[J]. 地理科学进展, 2020, 39(11): 1898-1908. |
[4] | 周尚意, 许伟麟. 时空压缩下的中国乡村空间生产——以广州市域乡村投资为例[J]. 地理科学进展, 2018, 37(5): 647-654. |
[5] | 朱阿兴, 杨琳, 樊乃卿, 曾灿英, 张甘霖. 数字土壤制图研究综述与展望[J]. 地理科学进展, 2018, 37(1): 66-78. |
[6] | 余亮, 孟晓丽. 基于地理格网分级法提取的中国传统村落空间分布[J]. 地理科学进展, 2016, 35(11): 1388-1396. |
[7] | 郭泉恩, 孙斌栋. 中国高技术产业创新空间分布及其影响因素——基于面板数据的空间计量分析[J]. 地理科学进展, 2016, 35(10): 1218-1227. |
[8] | 吴旗韬, 张虹鸥, 孙威, 叶玉瑶. 基于矢量—栅格集成法的厦深高铁影响空间分布——以广东东部地区为例[J]. 地理科学进展, 2015, 34(6): 707-715. |
[9] | 罗静, 陈琼, 刘峰贵, 张镱锂, 周强. 青藏高原河谷地区历史时期耕地格局重建方法探讨——以河湟谷地为例[J]. 地理科学进展, 2015, 34(2): 207-. |
[10] | 李启权, 王昌全, 岳天祥, 李冰, 张新, 高雪松, 张毅, 袁大刚. 基于定性和定量辅助变量的土壤有机质空间分布预测——以四川三台县为例[J]. 地理科学进展, 2014, 33(2): 259-269. |
[11] | 郑清菁, 戴特奇, 陶卓霖, 张萌萌. 重力模型参数空间差异研究——以中国城市间铁路客流为例[J]. 地理科学进展, 2014, 33(12): 1659-1665. |
[12] | 张珣, 钟耳顺, 张小虎, 王少华. 2004-2008年北京城区商业网点空间分布与集聚特征[J]. 地理科学进展, 2013, 32(8): 1207-1215. |
[13] | 佘冰, 朱欣焰, 呙维, 徐晓. 基于空间点模式分析的城市管理事件空间分布及演化——以武汉市江汉区为例[J]. 地理科学进展, 2013, 32(6): 924-931. |
[14] | 高金龙, 陈江龙, 杨叠涵. 南京市城市土地价格空间分布特征[J]. 地理科学进展, 2013, 32(3): 361-371. |
[15] | 蒋冲, 朱枫, 杨陈, 王飞, 穆兴民, 李锐. 秦岭南北地区光合有效辐射时空变化及突变特征[J]. 地理科学进展, 2013, 32(3): 435-446. |
|