地理科学进展 ›› 2013, Vol. 32 ›› Issue (1): 68-77.doi: 10.11820/dlkxjz.2013.01.007

• 气候与水文 • 上一篇    下一篇

2002-2010年长江流域GRACE水储量时空变化特征

许民1,2, 叶柏生1,2, 赵求东2   

  1. 1. 冰冻圈科学国家重点实验室, 兰州 730000;
    2. 中国科学院寒区旱区环境与工程研究所, 兰州 730000
  • 收稿日期:2012-07-01 修回日期:2012-11-01 出版日期:2013-01-25 发布日期:2013-01-25
  • 作者简介:许民(1984-),男,汉,新疆沙湾县人,博士研究生,主要从事3S技术与寒区旱区水文水资源研究。E-mail: xumin@126.com
  • 基金资助:

    国家自然科学基金重点项目(41130638,41030527);全球变化研究国家重大科学研究计划项目(2010CB951404);国家自然科学基金青年基金项目(41201025);中科院寒区旱区环境与工程研究所青年人才基金项目(51Y251A61);中国科学院“百人计划”项目。

Temporal and spatial pattern of water storage changes over the Yangtz river basin during 2002-2010 based on GRACE satellite data

XU Min1,2, YE Baisheng1,2, ZHAO Qiudong2   

  1. 1. State Key Laboratory of Cryophereic Science, Lanzhou 730000, China;
    2. Cold and Arid Regions Environmental and Enginerring Research Institute, CAS, Lanzhou 730000, China
  • Received:2012-07-01 Revised:2012-11-01 Online:2013-01-25 Published:2013-01-25

摘要: 利用高斯平滑滤波对2002年4月-2010年12月逐月GRACE卫星的时变重力场数据反演得到长江流域大尺度陆地水储量变化,对其时空变化进行研究,并将结果与全球陆面同化数据(GLDAS)模拟结果进行比较。其结论为:根据GRACE数据反演与GGLDAS模拟得到的水储量结果在大多数区域变化趋势相同,两者具有一致性,相关性达到0.89(P<0.05)。GRACE水储量研究结果表明:①2002-2010年长江流域水储量呈增加趋势,平均增长速率为0.43mm/月,相当于约95.04亿m3/年。长江上游增长速率为0.53mm/月,相当于约67.13亿m3/年;中游增长速率为0.51mm/月,相当于25.73亿m3/年;下游增长速率为0.36mm/月,相当于9.14亿m3/年。近9年长江流域水储量共增加约855.33亿m3。②从多年平均水储量空间分布来看,长江流域冬季月份(12、1、2、3月)水储量处于亏损状态,7-9月水储量处于盈余状态,4-6月下游至上游地区由亏损向盈余状态过渡,而10-11月则从上游至下游地区由盈余向亏损状态过渡。③全流域、上游及中游水储量逐月增长速率最大值出现在9月,分别为1.01cm/a、1.37cm/a、1.05cm/a;而下游地区则出现在7月,增长速率为1.62cm/a。

关键词: GLDAS模拟, GRACE卫星, 长江流域, 时空变化, 水储量

Abstract: The large-scale change of the amount of water storage over the Yangtze River basin is obtained by using monthly gravity field data, derived from GRACE satellite data between April of 2002 and December of 2010 with Gaussian filter. The temporal and spatial variations of water storage over the Yangtze River basin are compared to the data from GLDAS (Global Land Data Assimilation System) model. The results indicate that: (1) The two sets of data, derived from GRACE satellite and GLDAS model, show the same trend of change in the majority of the areas with high level of consistency; the correlation coefficient is 0.89 (P<0.05). (2) The amount of water storage over the Yangtze River Basin from 2002 to 2010 has an increasing trend. The average annual growth rate is 0.43cm/month, equivalent to 95.04×109 m3/a, with an average annual growth rate of 0.53 cm/month (67.13×109 m3/a) in the upstream area, 0.51cm/month (25.73×109 m3/a) in the midstream area, and 0.36 cm/month (9.14×109 m3/a) in the downstream area. The increasing amount of water storage over the Yangtze River Basin during the time period of nearly nine years is estimated to be 855.33×109 m3/a. Judging from the spatial distribution of average annual water storage over the Yangtze River Basin, there is a shortage in January, February, March, and December, and a surplus in July, August, and September, with a clear transition from shortage to surplus in April, May and June from downstream to upstream, and a transition from surplus to shortage in October and November from upstream to downstream. The maximum increase rate of water storage over the whole basin, in the upstream and midstream areas is in September, with 1.01 cm/a, 1.37 cm/a, and 1.05 cm/a, respectively, whereas in the downstream area the maximum increase rate is in July, with 1.62 cm/a.

Key words: GLDAS, GRACE, temporal and spatial variations, the Yangtze river basin, water storage