地理科学进展 ›› 2012, Vol. 31 ›› Issue (12): 1715-1723.doi: 10.11820/dlkxjz.2012.12.018
孙良杰1,2, 齐玉春1, 董云社1, 彭琴1, 何亚婷1,2, 刘欣超1,2, 贾军强1,2, 曹丛丛1,2
收稿日期:
2012-04-01
修回日期:
2012-09-01
出版日期:
2012-12-25
发布日期:
2012-12-25
通讯作者:
董云社(1961-),男,陕西武功人,研究员,主要从事全球变化与陆地生态系统碳氮元素循环过程研究。E-mail:dongys@igsnrr.ac.cn
作者简介:
孙良杰(1985-),男,山东日照人,博士研究生,主要从事草地土壤微生物学研究。E-mail:sunlj999@126.com
基金资助:
国家自然科学基金项目(40973057, 41073061);中国科学院知识创新工程重要方向项目(KZCX2-EW-302);农业部公益性行业科研专项(201203012)。
SUN Liangjie1,2, QI Yuchun1, DONG Yunshe1, PENG Qin1, HE Yating1,2, LIU Xinchao1,2, JIA Junqiang1,2, CAO Congcong1,2
Received:
2012-04-01
Revised:
2012-09-01
Online:
2012-12-25
Published:
2012-12-25
摘要: 全球变化对人类生存环境的影响已成为当前全世界共同关注的焦点。草地分布十分广泛, 且大多位于生态脆弱带, 对全球变化响应十分敏感。当前, 有关全球变化对草地生态系统影响的研究主要集中于地上植被部分, 对于生态系统物质循环关键参与者和草地碳源汇的重要调节者——土壤微生物的研究相对较少。本文综述了全球变化因子, 包括CO2浓度、气温、降水及氮沉降等因素及其交互作用对草地土壤微生物群落多样性影响的相关研究进展, 并在此基础上对当前研究中的一些不足之处进行剖析, 对未来研究需关注的问题和研究方向进行了讨论和展望。
孙良杰, 齐玉春, 董云社, 彭琴, 何亚婷, 刘欣超, 贾军强, 曹丛丛. 全球变化对草地土壤微生物群落多样性的影响研究进展[J]. 地理科学进展, 2012, 31(12): 1715-1723.
SUN Liangjie, QI Yuchun, DONG Yunshe, PENG Qin, HE Yating, LIU Xinchao, JIA Junqiang, CAO Congcong. Research Progresses on the Effects of Global Change on Microbial Community Diversity of Grassland Soils[J]. PROGRESS IN GEOGRAPHY, 2012, 31(12): 1715-1723.
[1] 朱连奇, 许立民. 全球变化对陆地生态系统的影响研究.地域研究与开发, 2011, 30(2): 161-165.[2] 周广胜, 王玉辉, 蒋延玲. 全球变化与中国东北样带(NECT). 地学前缘, 2002, 9(1): 198-216.[3] 曲建升, 葛全胜, 张雪芹. 全球变化及其相关科学概念的发展与比较. 地球科学进展, 2008, 23(12): 1277-1284.[4] 周广胜, 许振柱, 王玉辉. 全球变化的生态系统适应性.地球科学进展, 2004, 19(4): 642-649.[5] Vitousek P M, Aber J D, Howarth RW, et al. Human alterationof the global nitrogen cycle: Sources and consequences.Ecological Applications, 1997, 7(3): 737-750.[6] Jobbágy E G, Jackson R B. The vertical distribution of soilorganic carbon and its relation to climate and vegetation.Ecological Applications, 2000, 10(2): 423-436.[7] 徐柱. 面向21 世纪的中国草地资源. 中国草地, 1998(5):2-9.[8] 张新时. 草地的生态经济功能及其范式. 科技导报, 2000(8): 3-7, 65.[9] 杨钙仁, 童成立, 张文菊, 等. 陆地碳循环中的微生物分解作用及其影响因素. 土壤通报, 2005, 36(4): 605-609.[10] 张薇, 魏海雷, 高洪文, 等. 土壤微生物多样性及其环境影响因子研究进展. 生态学杂志, 2005, 24(1): 48-52.[11] He Z, Piceno Y, Deng Y, et al. The phylogenetic compositionand structure of soil microbial communities shifts inresponse to elevated carbon dioxide. The ISME Journal,2012, 6(2): 259-272.[12] Karl T R, Trenberth K E. Modern global climate change.Science, 2003, 302(5651): 1719-1723.[13] Kelley A M, Fay P A, Polley H W, et al. Atmospheric CO2and soil extracellular enzyme activity: A meta-analysisand CO2 gradient experiment. Ecosphere, 2011, 2(8):1-20.[14] Jackson R B, Cook C W, Pippen J S, et al. Increased belowgroundbiomass and soil CO2 fluxes after a decade ofcarbon dioxide enrichment in a warm-temperate forest.Ecology, 2009, 90(12): 3352-3366.[15] Gill R A, Polley H W, Johnson H B, et al. Nonlineargrassland responses to past and future atmospheric CO2.Nature, 2002, 417: 279-282.[16] Carney K M, Hungate B A, Drake B G, et al. Altered soilmicrobial community at elevated CO2 leads to loss of soilcarbon. Proceedings of the National Academy of Sciences,2007, 104(12): 4990-4995.[17] Kandeler E, Mosier A R, Morgan J A, et al. Transient elevationof carbon dioxide modifies the microbial communitycomposition in a semi-arid grassland. Soil Biologyand Biochemistry, 2008, 40(1): 162-171.[18] Drigo B, Pijl A S, Duyts H, et al. Shifting carbon flowfrom roots into associated microbial communities in responseto elevated atmospheric CO2. Proceedings of theNational Academy of Sciences, 2010, 107(24):10938-10942.[19] Drissner D, Blum H, Tscherko D, et al. Nine years of enrichedCO2 changes the function and structural diversityof soil microorganisms in a grassland. European Journalof Soil Science, 2007, 58(1): 260-269.[20] Montealegre C M, van Kessel C, Russelle M P, et al.Changes in microbial activity and composition in a pastureecosystem exposed to elevated atmospheric carbondioxide. Plant and Soil, 2002, 243(2): 197-207.[21] Schneider M K, Lüscher A, Richter M, et al. Ten years offree-air CO2 enrichment altered the mobilization of Nfrom soil in Lolium perenne L. swards. Global Change Biology,2004, 10(8): 1377-1388.[22] Regan K, Kammann C, Hartung K, et al. Can differencesin microbial abundances help explain enhanced N2Oemissions in a permanent grassland under elevated atmosphericCO2? Global Change Biology, 2011, 17(10):3176-3186.[23] Chung H, Zak D R, Reich P B, et al. Plant species richness,elevated CO2, and atmospheric nitrogen depositionalter soil microbial community composition and function.Global Change Biology, 2007, 13(5): 980-989.[24] IPCC. IPCC Special Report on Carbon Dioxide Capatureand Storage. Cambridge, United Kingdom and NewYork, NY, USA: Cambridge University Press, 2005.[25] Oppermann B I, Michaelis W, Blumenberg M, et al. Soilmicrobial community changes as a result of long-term exposureto a natural CO2 vent. Geochimica et CosmochimicaActa, 2010, 74(9): 2697-2716.[26] Ebersberger D, Wermbter N, Niklaus P A, et al. Effects oflong term CO2 enrichment on microbial community structurein calcareous grassland. Plant and Soil, 2004, 264(1): 313-323.[27] Niklaus P, Alphei J, Ebersberger D, et al. Six years of insitu CO2 enrichment evoke changes in soil structure andsoil biota of nutrient-poor grassland. Global Change Biology,2003, 9(4): 585-600.[28] IPCC. Climate Change 2007: Impacts, Adaptation andVulnerability. Contribution of Working Group II to theFourth Assessment Report of the Intergovernmental PanelonClimate Change. UK, 2007.[29] Huntington T G. Climate warming could reduce runoffsignificantly in New England, USA. Agricultural and ForestMeteorology, 2003, 117(3-4): 193-201.[30] Niu S, Wu M, Han Y, et al. Water-mediated responses ofecosystem carbon fluxes to climatic change in a temperatesteppe. New Phytologist, 2008, 177(1): 209-219.[31] Fenchel T, King G, Blackburn T. Bacterial Biogeochemistry.San Diego, CA, USA: Academic Press, 1998.[32] Scharpenseel H W, Schomaker M, Ayoub A. Soils on aWarmer Earth: Effects of Expected Climate Change onSoil Processes, with Emphasis on the Tropics andSub-tropics. New York, USA: Elsevier Science Ltd,1990.[33] Weltzin J F, Bridgham S D, Pastor J, et al. Potential effectsof warming and drying on peatland plant communitycomposition. Global Change Biology, 2003, 9(2):141-151.[34] Hu S, Chapin F S, Firestone M, et al. Nitrogen limitationof microbial decomposition in a grassland under elevatedCO2. Nature, 2001, 409(6817): 188-191.[35] Zhang W, Parker K M, Luo Y, et al. Soil microbial responsesto experimental warming and clipping in a tallgrassprairie. Global Change Biology, 2005, 11(2):266-277.[36] Pankratov T A, Ivanova A O, Dedysh S N, et al. Bacterial populations and environmental factors controlling cellulosedegradation in an acidic Sphagnum peat. EnvironmentalMicrobiology, 2011, 13(7): 1800-1814.[37] Malchair S, De Boeck H J, Lemmens C M H M, et al. Diversity–function relationship of ammonia-oxidizing bacteriain soils among functional groups of grassland speciesunder climate warming. Applied Soil Ecology, 2010,44(1): 15-23.[38] Horz H-P, Rich V, Avrahami S, et al. Methane-OxidizingBacteria in a California Upland Grassland Soil: Diversityand Response to Simulated Global Change. Applied andEnvironmental Microbiology, 2005, 71(5): 2642-2652.[39] Kandeler E, Tscherko D, Bardgett R D, et al. The responseof soil microorganisms and roots to elevated CO2and temperature in a terrestrial model ecosystem. Plantand Soil, 1998, 202(2): 251-262.[40] Bardgett R D, Kandeler E, Tscherko D, et al. Below-ground microbial community development in a hightemperature world. Oikos, 1999, 85(2): 193-203.[41] Wu Y, Yu X, Wang H, et al. Does history matter? Temperatureeffects on soil microbial biomass and communitystructure based on the phospholipid fatty acid (PLFA)analysis. Journal of Soils and Sediments, 2010, 10(2):223-230.[42] 米亮, 王光华, 金剑, 等. 黑土微生物呼吸及群落功能多样性对温度的响应. 应用生态学报, 2010, 21(6):1485-1491.[43] 江志红, 张霞, 王冀. IPCC-AR4 模式对中国21 世纪气候变化的情景预估. 地理研究, 2008, 27(4): 787-799.[44] Van Gestel M, Merckx R, Vlassak K. Microbial biomassresponses to soil drying and rewetting: The fate offast-and slow-growing microorganisms in soils from differentclimates. Soil Biology and Biochemistry, 1993, 25(1): 109-123.[45] Schimel J P, Gulledge J M, Clein-Curley J S, et al. Moistureeffects on microbial activity and community structurein decomposing birch litter in the Alaskan taiga. SoilBiology and Biochemistry, 1999, 31(6): 831-838.[46] Bapiri A, Baath E, Rousk J. Drying-rewetting cycles affectfungal and bacterial growth differently in an arablesoil. Microbial Ecology, 2010, 60(2): 419-428.[47] Denef K, Six J, Bossuyt H, et al. Influence of dry-wet cycleson the interrelationship between aggregate, particulateorganic matter, and microbial community dynamics.Soil Biology and Biochemistry, 2001, 33(12-13):1599-1611.[48] Thomson B C, Ostle N J, McNamara N P, et al. Effects ofsieving, drying and rewetting upon soil bacterial communitystructure and respiration rates. Journal of MicrobiologicalMethods, 2010, 83(1): 69-73.[49] Horz H P, Barbrook A, Field C B, et al. Ammonia-oxidizingbacteria respond to multifactorial global change. Proceedingsof the National Academy of Sciences of theUnited States of America, 2004, 101(42): 15136-15141.[50] Fierer N, Schimel J P, Holden P A. Influence of drying-rewettingfrequency on soil bacterial community structure.Microbial Ecology, 2003, 45(1): 63-71.[51] Castro H F, Classen A T, Austin E E, et al. Soil microbialcommunity responses to multiple experimental climatechange drivers. Applied and Environmental Microbiology,2010, 76(4): 999-1007.[52] Cruz-Martinez K, Suttle K B, Brodie E L, et al. Despitestrong seasonal responses, soil microbial consortia aremore resilient to long-term changes in rainfall than overlyinggrassland. The ISME Journal, 2009, 3(6): 738-744.[53] Galloway J N, Townsend A R, Erisman J W, et al. Transformationof the nitrogen cycle: Recent trends, questions,and potential solutions. Science, 2008, 320: 889-892.[54] 薛璟花, 莫江明, 李炯, 等. 氮沉降增加对土壤微生物的影响. 生态环境, 2005, 14(5): 777-782.[55] Smolander A, Kurka A, Kitunen V, et al. Microbial biomassC and N, and respiratory activity in soil of repeatedlylimed and N-and P-fertilized Norway spruce stands.Soil Biology and Biochemistry, 1994, 26(8): 957-962.[56] Kennedy N, Brodie E, Connolly J, et al. Impact of lime,nitrogen and plant species on bacterial community structurein grassland microcosms. Environmental Microbiology,2004, 6(10): 1070-1080.[57] Steenwerth K L, Jackson L E, Calderón F J, et al. Soil microbialcommunity composition and land use history incultivated and grassland ecosystems of coastal California.Soil Biology and Biochemistry, 2002, 34(11):1599-1611.[58] B??th E, Anderson T H. Comparison of soil fungal/bacterialratios in a pH gradient using physiological andPLFA-based techniques. Soil Biology and Biochemistry,2003, 35(7): 955-963.[59] B??th E. Adaptation of soil bacterial communities to prevailingpH in different soils. FEMS Microbiol Ecol,1996, 19(4): 227-237.[60] 刘蔚秋, 刘滨扬, 王江, 等. 不同环境条件下土壤微生物对模拟大气氮沉降的响应. 生态学报, 2010, 30(7):1691-1698.[61] Bardgett R D, Lovell R D, Hobbs P J, et al. Seasonalchanges in soil microbial communities along a fertilitygradient of temperate grasslands. Soil Biology and Biochemistry,1999, 31(7): 1021-1030.[62] Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogenenrichment affects the structure and function of the soilmicrobial community in temperate hardwood and pineforests. Forest Ecology and Management, 2004, 196(1):159-171.[63] 薛璟花, 莫江明, 李炯, 等. 土壤微生物数量对模拟氮沉降增加的早期响应. 广西植物, 2007, 27(2): 174-179,202.[64] Yevdokimov I, Gattinger A, Buegger F, et al. Changes inmicrobial community structure in soil as a result of differentamounts of nitrogen fertilization. Biology and Fertilityof Soils, 2008, 44(8): 1103-1106.[65] Di H J, Cameron K C, Shen J P, et al. Ammonia-oxidizingbacteria and archaea grow under contrasting soil nitrogenconditions. FEMS Microbiology Ecology, 2010, 72(3): 386-394.[66] 张燕, 崔学民, 樊明寿. 大气氮沉降及其对草地生物多样性的影响. 草业科学, 2007, 24(7): 12-17.[67] Yoshida L C, Allen E B. Response to ammonium and nitrateby a mycorrhizal annual invasive grass and nativeshrub in southern California. American Journal of Botany,2001, 88(8): 1430-1436.[68] Heil G, Werger M, De Mol W, et al. Capture of atmosphericammonium by grassland canopies. Science, 1988,239(4841): 764-765.[69] DeForest J L, Zak D R, Pregitzer K S, et al. Atmosphericnitrate deposition, microbial community composition,and enzyme activity in northern hardwood forests. SoilScience Society of America Journal, 2004, 68(1):132-138.[70] Blankinship J C, Niklaus P A, Hungate B A. A meta-analysisof responses of soil biota to global change. Oecologia,2011, 165(3): 1-13.[71] Gutknecht J L M, Field C B, Balser T C. Microbial communitiesand their responses to simulated global changefluctuate greatly over multiple years. Global Change Biology,2012, 18(7): 2256-2269.[72] Zavaleta E S, Shaw M R, Chiariello N R, et al. Additiveeffects of simulated climate changes, elevated CO2, andnitrogen deposition on grassland diversity. Proceedingsof the National Academy Sciences of United States ofAmerica, 2003, 100(13): 7650-7654.[73] Eisenhauer N, Cesarz S, Koller R, et al. Global change belowground:Impacts of elevated CO2, nitrogen, and summerdrought on soil food webs and biodiversity. GlobalChange Biology, 2012, 18(2): 435-447. |
[1] | 张灵, 张俊, 杜良敏, 高雅琦. 长江上游降水对三峡水库蓄水关键月入库流量的影响[J]. 地理科学进展, 2020, 39(7): 1117-1125. |
[2] | 孙赫, 苏凤阁. 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J]. 地理科学进展, 2020, 39(7): 1126-1139. |
[3] | 徐明, 石玉立, 王彬. 高分辨率青藏高原历史月降水数据重建[J]. 地理科学进展, 2018, 37(7): 923-932. |
[4] | 张芳芳, 郑永宏, 潘国艳, 袁帅, 孔繁希, 起永东, 王丹. 神农架地区树轮δ18O序列的气候指示意义[J]. 地理科学进展, 2018, 37(7): 946-953. |
[5] | 朱艳欣, 桑燕芳. 青藏高原降水季节分配的空间变化特征[J]. 地理科学进展, 2018, 37(11): 1533-1544. |
[6] | 温小洁, 姚顺波, 赵敏娟. 基于降水条件的城镇化与植被覆盖协调发展研究[J]. 地理科学进展, 2018, 37(10): 1352-1361. |
[7] | 张小飞, 彭建, 王仰麟, 吴文斌, 杨鹏, 刘焱序, 宋治清, 薛怡珍. 全球变化背景下景观生态适应性特征[J]. 地理科学进展, 2017, 36(9): 1167-1175. |
[8] | 郭禹含, 王中根, 伍玉良. 多源再分析降水数据在拉萨河流域应用对比研究[J]. 地理科学进展, 2017, 36(8): 1033-1039. |
[9] | 李国庆, 李晓兵. 风电场对环境的影响研究进展[J]. 地理科学进展, 2016, 35(8): 1017-1026. |
[10] | 李运刚, 何娇楠, 李雪. 基于SPEI和SDI指数的云南红河流域气象水文干旱演变分析[J]. 地理科学进展, 2016, 35(6): 758-767. |
[11] | 吴致蕾, 刘峰贵, 张镱锂, 陈琼, 周强, 杨登兴. 清代青藏高原东北部河湟谷地林草地覆盖变化[J]. 地理科学进展, 2016, 35(6): 768-778. |
[12] | 黄浠, 王中根, 桑燕芳, 杨默远, 刘晓聪, 巩同梁. 雅鲁藏布江流域不同源降水数据质量对比研究[J]. 地理科学进展, 2016, 35(3): 339-348. |
[13] | 马文勇, 王训明. 基于高光谱分析的草地叶绿素含量估算研究进展[J]. 地理科学进展, 2016, 35(1): 25-34. |
[14] | 赵诗坤, 庞朔光, 文蓉, 刘忠方. 海河流域降水稳定同位素的云底二次蒸发效应[J]. 地理科学进展, 2015, 34(8): 1031-1038. |
[15] | 丁婧祎, 赵文武, 王军, 房学宁. 降水和植被变化对径流影响的尺度效应——以陕北黄土丘陵沟壑区为例[J]. 地理科学进展, 2015, 34(8): 1039-1051. |
|