Please wait a minute...
PROGRESS IN GEOGRAPHY
 
引用检索 快速检索 图表检索 高级检索
地理科学进展  2012, Vol. 31 Issue (11): 1485-1491    DOI: 10.11820/dlkxjz.2012.11.009
  研究进展 本期目录 | 过刊浏览 | 高级检索 |
水稻发育期模型研究进展
张帅, 陶福禄
中国科学院地理科学与资源研究所,北京 100101
Review of Research on Rice Phenology Models
ZHANG Shuai, TAO Fulu
Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
全文: PDF(452 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 物候是气候变化的重要指示物.随着全球变化研究的开展,已经有越来越多的研究表明,随着气象条件的变化,植物的物候期发生了明显的变化,因此,对物候的精准模拟可以帮助我们准确理解作物对全球变化的响应机制,强大的物候模型已经逐渐成为提高植物对气候变化响应的模拟精度的一个关键工具.同时作物物候的模拟也是作物模型的一个重要组成部分.水稻是最重要的粮食作物之一,水稻发育期模型研究对水稻生长模型有着重要的意义.本文对国内外水稻发育模型的发展进行了综述,并提出了目前水稻发育期模型研究中存在的问题以及发展的方向,以期后续的水稻发育期模型乃至作物模型的研究提供借鉴.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张养贞
关键词 发育期模型水稻物候    
Abstract:Phenology, the study of biological events and how they are influenced by seasonal and interannual variations in climate change, is an important indicator of climate change, as more and more studies suggest that plant phenology goes through dramatic change in response to climate change. Thus an accurate phenology model is needed for us to accurately understand the mechanism of how crops respond to global climate change. Phenological sub-models are being widely used in the models such as ecosystem productivity models, land surface process models and crop simulation models, because phenology provides important data. A good phenology model improves the accuracy of the simulation of energy exchange between the earth and its atmosphere and the accuracy of carbon assessment. A robust phenology model has gradually become a critical tool for improving the accuracy of the simulation of the changes of crops in response to climate change, and the simulation of crop phenology in turn is an important part of crop model. Rice is one of the most important crops in the world and is the major food crop in China. This paper reviews research progress on rice phenology models abroad and at home, discusses the categories of the models and uses several models as examples. The current issues and future trends are suggested as well. This review can serve as a reference for research on rice phenology models and crop models.
Key wordsdevelopmental stage    model    phenology    rice
收稿日期: 2012-03-01      出版日期: 2012-12-13
基金资助:

国家973项目课题(2010CB950902).

通讯作者: 陶福禄(1970-),男,研究员,主要研究方向为全球变化生态学和农林气象学.E-mail: taofl@igsnrr.ac.cn     E-mail: taofl@igsnrr.ac.cn
作者简介: 张帅(1982-),女,博士研究生,主要研究方向为农业气象.E-mail: zhangshuai@lreis.ac.cn
引用本文:   
张帅, 陶福禄. 水稻发育期模型研究进展[J]. 地理科学进展, 2012, 31(11): 1485-1491.
ZHANG Shuai, TAO Fulu. Review of Research on Rice Phenology Models. PROGRESS IN GEOGRAPHY, 2012, 31(11): 1485-1491.
链接本文:  
http://www.progressingeography.com/CN/10.11820/dlkxjz.2012.11.009      或      http://www.progressingeography.com/CN/Y2012/V31/I11/1485
Ahas R, Jaagus J, Aasa A. The phenological calendar ofEstonia and its correlation with mean air temperature. InternationalJournal of Biometeorology, 2000, 44(4):159-166.
Badeck F W, Bondeau A, Bottcher K, et al. Responses ofspring phenology to climate change. New Phytologist,2004, 162(2): 295-309.
McBratney A B, Mendonca Santos M L, Minasny B. Ondigital soil mapping. Geoderma, 2003, 117(1-2): 3-52.
Menzel A, Sparks T H, Estrella N, et al. European phenologicalresponse to climate change matches the warmingpattern. Global Change Biology, 2006, 12(10):1969-1976.
White M A, Thornton P E, Running S W. A continentalphenology model for monitoring vegetation responses tointerannual climatic variability. Global BiogeochemicalCycles, 1997,11(2): 217-234.
Menzel A and Fabian P. Growing season extended in Europe.Nature, 1999, 397(6721): 659-659.
Myneni R B, Keeling C D, Tucker C J, et al. Increasedplant growth in the northern high latitudes from 1981 to1991. Nature, 1997, 386(6626): 698-702.
Tao F L, Yokozawa M, Zhang Z, et al. Land surface phenologydynamics and climate variations in the North EastChina Transect (NECT), 1982-2000. International Journalof Remote Sensing, 2008, 29(19): 5461-5478.
White M A, de Beurs K M, Didan K, et al. Intercomparison,interpretation, and assessment of spring phenologyin North America estimated from remote sensing for1982-2006. Global Change Biology, 2009, 15(10):2335-2359.
Zhang X, Friedl M A, Schaaf C B, et al. Climate controlson vegetation phenological patterns in northern mid- andhigh latitudes inferred from MODIS data. Global ChangeBiology, 2004, 10(7): 1133-1145.
Sacks W J, Kucharik C J. Crop management and phenologytrends in the U.S. Corn Belt: Impacts on yields, evapotranspirationand energy balance. Agricultural and ForestMeteorology, 2011, 151(7): 882-894.
Shimono H. Earlier rice phenology as a result of climatechange can increase the risk of cold damage during reproductivegrowth in northern Japan. Agriculture. Ecosystems& Environment, 2011, 144(1): 201-207.
Siebert S. and Ewert F. Spatio-temporal patterns of phenologicaldevelopment in Germany in relation to temperatureand day length. Agricultural and Forest Meteorology,2012, 152(15): 44-57.
Vitasse Y, Francois C, Delpierre N, et al. Assessing the effectsof climate change on the phenology of Europeantemperate trees. Agricultural and Forest Meteorology,2011, 151(7): 969-980.
Karlsen S R, Hogda K A, Wielgolaski F E, et al. Growing-season trends in Fennoscandia 1982-2006, determinedfrom satellite and phenology data. Climate Research,2009, 39(3): 275-286.
Morin X, Roy J, Sonie L, et al. Changes in leaf phenologyof three European oak species in response to experimentalclimate change. New Phytologist, 2010, 186(4):900-910.
Fitter A H. and Fitter R S R. Rapid changes in floweringtime in British plants. Science, 2002, 296(5573):1689-1691.
Garcia-Mozo H, Mestre A, Galan C, et al. Phenologicaltrends in southern Spain: A response to climate change.Agricultural and Forest Meteorology, 2010, 150(4):575-580.
Menzel A, Estrella N Fabian P. Spatial and temporal variabilityof the phenological seasons in Germany from1951 to 1996. Global Change Biology, 2001, 7(6):657-666.
Sparks T H and Carey P D. The responses of species toclimate over two centuries: An analysis of the Marshamphenological record, 1736-1947. Journal of Ecology, 1995, 83(2): 321-329.
Chuine I, Cambon G, Comtois P. Scaling phenology fromthe local to the regional level: advances from species-specificphenological models. Global Change Biology, 2000,6(8): 943-952.
van Oort P A J, Zhang T Y, de Vries M E, et al. Correlationbetween temperature and phenology prediction errorin rice (Oryza sativa L.). Agricultural and Forest Meteorology,2011, 151(12): 1545-1555.
Chuine I, Cour P, Rousseau D D. Selecting models to predictthe timing of flowering of temperate trees: implicationsfor tree phenology modelling. Plant Cell and Environment,1999, 22(1): 1-13.
Streck N A, de Paula F L M, Bisognin D A, et al. Simulatingthe development of field grown potato (Solanum tuberosumL.). Agricultural and Forest Meteorology, 2007,142(1): 1-11.
Andrej C, Zalika C, Lucka K, et al. The simulation of phenologicaldevelopment in dynamic crop model: TheBayesian comparison of different methods. Agriculturaland Forest Meteorology, 2011, 151(1): 101-115.
Chmielewski F M, Rotzer T. Response of tree phenologyto climate change across Europe. Agricultural and ForestMeteorology, 2001, 108(2): 101-112.
Zhang T Y, Zhu J, Yang X G, Non-stationary thermaltime accumulation reduces the predictability of climatechange effects on agriculture. Agricultural and Forest Meteorology,2008, 148(10): 1412-1418.
Kimura M and Minami K. Dynamics of methane in ricefields: Emissions to the atmosphere in Japan and Thailand//Peng S, Ingram K T, Neue H U et al. ClimateChange and Rice. Berlin: Springer-Verlag, 1995: 30-45.
Yoshida S. Fundamentals of Rice Crop Science. Los Banos,Philippines: International Rice Research Institute,1981: 269.
FAO. FAOSTAT database 2010 [DB/OL]. 2010-09-20[2011-02-13]. http://www.fao.org
Horie T, Centeno G S, Nakagawa H, et al. Effect of elevatedcarbon dioxide and climate change on rice productionin East and Southeast Asia//Oshima Y. Proceedingsof the International Scientific Symposium on Asian PaddyFields. Saskatchewan, Canada: University of Saskatchewan,1997: 913-967.
Kropff M J, Centeno G S, Bachelet D, et al. Predictingthe impact of CO2 and temperature on rice production//IRRI Seminar Series on Climate Change and Rice. InternationalRice Research Institute, Los Banos, Philippines,1993.
Matthews R B, Kropff M J, Horie T, et al. Simulating theimpact of climate change on rice production in Asia andevaluating options for adaptation. Agricultural Systems,1997, 54(3): 399-425.
Alocilja E C, and Ritchie J T. A model for the phenologyof rice//Hodges T. Predicting Crop Phenology. Boca Raton:CRC Press, 1991: 181-189.
Roberts E H, Summertield R J. Measurement and predictionof flowering in annual crops//Atherton J G. Manipulationof Flowering. London: Butterworths, 1987: 17-50.
Tollenaar M, Daynard T B, Hunter R B. Effect of temperatureon rate of leaf appearance and flowering date inmaize. Crop Science, 1979, 19(3): 363-366.
Kiniry J R, Keener M E. An enzyme kinetic equation toestimate maize development rates. Agronomy Journal,1982, 74(1): 115-119.
Lehenbauer P A. Growth of maize seedlings in relation totemperature. Physiological Research, 1914, 1(5):247-288.
Gilmore E C and Rogers J S. Heat units as a method ofmeasuring maturity in corn. Agronomy Journal, 1958, 50(10): 611-615.
Coelho D T, Dale R F. An energy-crop growth variableand temperature function for predicting corn growth anddevelopment: Planting to silking. Agronomy Journal,1980, 72(3): 503-510.
Garcia-Huidobro J, Monteith J L, Squire G R. Time, temperatureand germination of pearl millet (Pennisetum typhoidesS. and H.). I. Constant temperature. Journal ofExperimental Biology, 1982, 33(2): 288-296.
Ferguson J H.A. Empirical estimation of thermoreactioncurves for the rate of development. Euphytica, 1958, 7(2): 140-146.
Orchard T J. Calculating constant temperature equivalents.Agricultural Meteorology, 1975, 15(3): 405-418.
Tyldesley J B. A method of evaluating the effect of temperatureon an organism when the response is nonlinear.Agricultural Meteorology, 1978, 19(2): 137-153.
Johnson I R, Thomley J H M. Temperature dependence ofplant and crop processes. Annals of Botany, 1985, 55(1):1-24.
Angus J F, Mackenzie D H, Morton R, et al. Phasic developmentin field crops. II: Thermal and photoperiodic responsesof spring wheat. Field Crops Research, 1981, 4(3): 269-283.
Horie T, Nakagawa H. Modelling and prediction of devel-opment process in rice. I: Structure and method of parameterestimation of a model for simulating developmentprocess toward heading. Japan Journal of Crop Science,1990, 59(4): 687-695.
Brounwer R, Wit C T. A simulation model of plantgrowth with special attention to root growth and its consequences//Whittington N W J. Root growth. London: Butterworths,1969: 222-224.
Duncan W G, Baker D N. Simulation of growth and yieldin cotton: II. A computer analysis of the nutritional theory.Proceedings of the Beltwide Cotton Conference, Memphis,TN: National Cotton Council, 1971: 45-61.
de Wit C T, Goudriaan J, Van Laar H H, et al. Simulationof Assimilation, Respiration and Transpiration of Crops.Wageningen, Netherlands: Pudoc., 1978: 140.
McMaster G S, Morgan J S, Wihelm W W. Simulatingwinter wheat spikes development and growth. Agriculturaland Forest Meteorology, 1992, 60(3): 193-220.
Penning de Vries F W T,Van Laar H H. Simulation ofGrowth Processes and the Model BACROS//Penning deVries F W T, Van Laar H H. Simulation of Plant Growthand Crop Production. Wageningen, Netherlands: Pudoc.,1982: 114-135.
Ritchie J T, Otter S. Description and performance of CERES-Wheat: A user oriented wheat yield model. USDAARS:ARS38, 1985: 159-175..
曹永华. 美国CERES 作物模拟模型及其应用. 世界农业, 1991(9): 52-55.
Bouman B A M, Kropff M J, Tuong T P. ORYZA2000:Modeling lowland rice. Los Banos: IRRI and WageningenUniversity, 2001: 235.
何英彬,陈佑启,唐华俊. 基于MODIS反演逐日LAI 及SIMRIW模型的冷害对水稻单产的影响研究. 农业工程学报, 2007, 23(11): 188-194.
李亚龙,崔远来,李远华. 水—氮联合限制条件下对水稻生产模型ORYZA2000 的验证与评价. 灌溉排水学报, 2005, 24(1): 28-32, 44.
戚昌瀚, 殷新佑, 刘桃菊, 等. 水稻生长日历模拟模型(RICAM)的调控决策系统(RICOS)研究. 江西农业大学学报, 1994, 16(4): 323-327.
郑国清. 浅论对水稻发育期模型的认识. 中国农业气象, 1999, 20(2): 31-34.
冯利平, 高亮之, 金之庆, 等. 小麦发育期动态模拟模型的研究. 作物学报, 1997, 23(4): 418-424.
潘学标, 韩湘玲, 石元春. COTGROW: 棉花生长发育模拟模型. 棉花学报, 1996, 8(4): 180-188.
沈国权. 影响作物发育速度的非线性温度模式. 气象,1980(6): 9-11.
戚昌瀚, 殷新佑, 谢华蔼. 水稻产量形成的生长日历模拟模型的初步研究. 江西农业大学学报, 1991(专刊2):29-43.
Gao L Z, Jin Z Q, Huang Y, et al. Rice clock model: Acomputer model to simulate rice development. Agriculturaland Forest Meteorology, 1992, 60(1-2): 1-16.
Yin X Y. A nonlinear model to quantify temperature effecton rice phenology and its application. Acta AgronomicaSinica, 1994, 20(6): 692-700.
Meng Y L, Cao W X, Zhou Z G. A Process-based Modelfor Simulation Phasic Development and Phenology inRice. Scientia Agricultura Sinica, 2003, 36(11):1362-1367.
Yan M C, Cao W X, Li C D, et al. Validation and evaluationof amechanistic model of phasic and phenologicaldevelopment of wheat. Scientia Agricultura Sinica, 2000,33(2): 43-50.
Yan M C, Cao W Y, Luo W. A mechanistic model of phasicand phenological development of wheat.I: Assumptionand description of the model. Chinese Journal of ApplliedEcology, 2000, 11(3): 355-359.
陈小虎,曾习农,黄江青,等. 籼型水稻生长发育实效积温的确定及相关性研究. 作物研究, 2005, 19(3):143-146.
王尚明, 张崇华, 胡逢喜, 等. 空气温度对水稻生长影响的数学模拟. 江西农业学报, 2007, 19(10): 16-18.
Robertson G W. Development of simplified agroclimaticprocedures for assessing temperature effects on crop development//Slatyer R O. Plant Response to Climatic Factors.Paris: UNESCO, Philippine Weather Bureau, 1973:327-343.
Bouman B A M, Van Laar H H. Description and evaluationof the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 2006, 87(3): 249-273.
Das L, Lohar D, Sadhukhan I, et al. Evaluation of the performanceof ORYZA2000 and assessing the impact of climatechange on rice production in Gangetic West Bengal.Journal of Agrometeorology, 2007, 9(1): 1-10.
陈华, 张立中, 方娟. 小麦发育动态模拟模型的初步研究. 中国农业气象, 1995, 16(1): 1-4.
郑国清,高亮之. 玉米发育期动态模拟模型. 江苏农业学报, 2000, 16(1): 15-21.
[1]Ahas R, Jaagus J, Aasa A. The phenological calendar ofEstonia and its correlation with mean air temperature. InternationalJournal of Biometeorology, 2000, 44(4):159-166.
[2]Badeck F W, Bondeau A, Bottcher K, et al. Responses ofspring phenology to climate change. New Phytologist,2004, 162(2): 295-309.
[3]McBratney A B, Mendonca Santos M L, Minasny B. Ondigital soil mapping. Geoderma, 2003, 117(1-2): 3-52.
[4]Menzel A, Sparks T H, Estrella N, et al. European phenologicalresponse to climate change matches the warmingpattern. Global Change Biology, 2006, 12(10):1969-1976.
[5]White M A, Thornton P E, Running S W. A continentalphenology model for monitoring vegetation responses tointerannual climatic variability. Global BiogeochemicalCycles, 1997,11(2): 217-234.
[6]Menzel A and Fabian P. Growing season extended in Europe.Nature, 1999, 397(6721): 659-659.
[7]Myneni R B, Keeling C D, Tucker C J, et al. Increasedplant growth in the northern high latitudes from 1981 to1991. Nature, 1997, 386(6626): 698-702.
[8]Tao F L, Yokozawa M, Zhang Z, et al. Land surface phenologydynamics and climate variations in the North EastChina Transect (NECT), 1982-2000. International Journalof Remote Sensing, 2008, 29(19): 5461-5478.
[9]White M A, de Beurs K M, Didan K, et al. Intercomparison,interpretation, and assessment of spring phenologyin North America estimated from remote sensing for1982-2006. Global Change Biology, 2009, 15(10):2335-2359.
[10]Zhang X, Friedl M A, Schaaf C B, et al. Climate controlson vegetation phenological patterns in northern mid- andhigh latitudes inferred from MODIS data. Global ChangeBiology, 2004, 10(7): 1133-1145.
[11]Sacks W J, Kucharik C J. Crop management and phenologytrends in the U.S. Corn Belt: Impacts on yields, evapotranspirationand energy balance. Agricultural and ForestMeteorology, 2011, 151(7): 882-894.
[12]Shimono H. Earlier rice phenology as a result of climatechange can increase the risk of cold damage during reproductivegrowth in northern Japan. Agriculture. Ecosystems& Environment, 2011, 144(1): 201-207.
[13]Siebert S. and Ewert F. Spatio-temporal patterns of phenologicaldevelopment in Germany in relation to temperatureand day length. Agricultural and Forest Meteorology,2012, 152(15): 44-57.
[14]Vitasse Y, Francois C, Delpierre N, et al. Assessing the effectsof climate change on the phenology of Europeantemperate trees. Agricultural and Forest Meteorology,2011, 151(7): 969-980.
[15]Karlsen S R, Hogda K A, Wielgolaski F E, et al. Growing-season trends in Fennoscandia 1982-2006, determinedfrom satellite and phenology data. Climate Research,2009, 39(3): 275-286.
[16]Morin X, Roy J, Sonie L, et al. Changes in leaf phenologyof three European oak species in response to experimentalclimate change. New Phytologist, 2010, 186(4):900-910.
[17]Fitter A H. and Fitter R S R. Rapid changes in floweringtime in British plants. Science, 2002, 296(5573):1689-1691.
[18]Garcia-Mozo H, Mestre A, Galan C, et al. Phenologicaltrends in southern Spain: A response to climate change.Agricultural and Forest Meteorology, 2010, 150(4):575-580.
[19]Menzel A, Estrella N Fabian P. Spatial and temporal variabilityof the phenological seasons in Germany from1951 to 1996. Global Change Biology, 2001, 7(6):657-666.
[20]Sparks T H and Carey P D. The responses of species toclimate over two centuries: An analysis of the Marshamphenological record, 1736-1947. Journal of Ecology, 1995, 83(2): 321-329.
[21]Chuine I, Cambon G, Comtois P. Scaling phenology fromthe local to the regional level: advances from species-specificphenological models. Global Change Biology, 2000,6(8): 943-952.
[22]van Oort P A J, Zhang T Y, de Vries M E, et al. Correlationbetween temperature and phenology prediction errorin rice (Oryza sativa L.). Agricultural and Forest Meteorology,2011, 151(12): 1545-1555.
[23]Chuine I, Cour P, Rousseau D D. Selecting models to predictthe timing of flowering of temperate trees: implicationsfor tree phenology modelling. Plant Cell and Environment,1999, 22(1): 1-13.
[24]Streck N A, de Paula F L M, Bisognin D A, et al. Simulatingthe development of field grown potato (Solanum tuberosumL.). Agricultural and Forest Meteorology, 2007,142(1): 1-11.
[25]Andrej C, Zalika C, Lucka K, et al. The simulation of phenologicaldevelopment in dynamic crop model: TheBayesian comparison of different methods. Agriculturaland Forest Meteorology, 2011, 151(1): 101-115.
[26]Chmielewski F M, Rotzer T. Response of tree phenologyto climate change across Europe. Agricultural and ForestMeteorology, 2001, 108(2): 101-112.
[27]Zhang T Y, Zhu J, Yang X G, Non-stationary thermaltime accumulation reduces the predictability of climatechange effects on agriculture. Agricultural and Forest Meteorology,2008, 148(10): 1412-1418.
[28]Kimura M and Minami K. Dynamics of methane in ricefields: Emissions to the atmosphere in Japan and Thailand//Peng S, Ingram K T, Neue H U et al. ClimateChange and Rice. Berlin: Springer-Verlag, 1995: 30-45.
[29]Yoshida S. Fundamentals of Rice Crop Science. Los Banos,Philippines: International Rice Research Institute,1981: 269.
[30]FAO. FAOSTAT database 2010 [DB/OL]. 2010-09-20[2011-02-13].
[31]Horie T, Centeno G S, Nakagawa H, et al. Effect of elevatedcarbon dioxide and climate change on rice productionin East and Southeast Asia//Oshima Y. Proceedingsof the International Scientific Symposium on Asian PaddyFields. Saskatchewan, Canada: University of Saskatchewan,1997: 913-967.
[32]Kropff M J, Centeno G S, Bachelet D, et al. Predictingthe impact of CO2 and temperature on rice production//IRRI Seminar Series on Climate Change and Rice. InternationalRice Research Institute, Los Banos, Philippines,1993.
[33]Matthews R B, Kropff M J, Horie T, et al. Simulating theimpact of climate change on rice production in Asia andevaluating options for adaptation. Agricultural Systems,1997, 54(3): 399-425.
[34]Alocilja E C, and Ritchie J T. A model for the phenologyof rice//Hodges T. Predicting Crop Phenology. Boca Raton:CRC Press, 1991: 181-189.
[35]Roberts E H, Summertield R J. Measurement and predictionof flowering in annual crops//Atherton J G. Manipulationof Flowering. London: Butterworths, 1987: 17-50.
[36]Tollenaar M, Daynard T B, Hunter R B. Effect of temperatureon rate of leaf appearance and flowering date inmaize. Crop Science, 1979, 19(3): 363-366.
[37]Kiniry J R, Keener M E. An enzyme kinetic equation toestimate maize development rates. Agronomy Journal,1982, 74(1): 115-119.
[38]Lehenbauer P A. Growth of maize seedlings in relation totemperature. Physiological Research, 1914, 1(5):247-288.
[39]Gilmore E C and Rogers J S. Heat units as a method ofmeasuring maturity in corn. Agronomy Journal, 1958, 50(10): 611-615.
[40]Coelho D T, Dale R F. An energy-crop growth variableand temperature function for predicting corn growth anddevelopment: Planting to silking. Agronomy Journal,1980, 72(3): 503-510.
[41]Garcia-Huidobro J, Monteith J L, Squire G R. Time, temperatureand germination of pearl millet (Pennisetum typhoidesS. and H.). I. Constant temperature. Journal ofExperimental Biology, 1982, 33(2): 288-296.
[42]Ferguson J H.A. Empirical estimation of thermoreactioncurves for the rate of development. Euphytica, 1958, 7(2): 140-146.
[43]Orchard T J. Calculating constant temperature equivalents.Agricultural Meteorology, 1975, 15(3): 405-418.
[44]Tyldesley J B. A method of evaluating the effect of temperatureon an organism when the response is nonlinear.Agricultural Meteorology, 1978, 19(2): 137-153.
[45]Johnson I R, Thomley J H M. Temperature dependence ofplant and crop processes. Annals of Botany, 1985, 55(1):1-24.
[46]Angus J F, Mackenzie D H, Morton R, et al. Phasic developmentin field crops. II: Thermal and photoperiodic responsesof spring wheat. Field Crops Research, 1981, 4(3): 269-283.
[47]Horie T, Nakagawa H. Modelling and prediction of devel-opment process in rice. I: Structure and method of parameterestimation of a model for simulating developmentprocess toward heading. Japan Journal of Crop Science,1990, 59(4): 687-695.
[48]Brounwer R, Wit C T. A simulation model of plantgrowth with special attention to root growth and its consequences//Whittington N W J. Root growth. London: Butterworths,1969: 222-224.
[49]Duncan W G, Baker D N. Simulation of growth and yieldin cotton: II. A computer analysis of the nutritional theory.Proceedings of the Beltwide Cotton Conference, Memphis,TN: National Cotton Council, 1971: 45-61.
[50]de Wit C T, Goudriaan J, Van Laar H H, et al. Simulationof Assimilation, Respiration and Transpiration of Crops.Wageningen, Netherlands: Pudoc., 1978: 140.
[51]McMaster G S, Morgan J S, Wihelm W W. Simulatingwinter wheat spikes development and growth. Agriculturaland Forest Meteorology, 1992, 60(3): 193-220.
[52]Penning de Vries F W T,Van Laar H H. Simulation ofGrowth Processes and the Model BACROS//Penning deVries F W T, Van Laar H H. Simulation of Plant Growthand Crop Production. Wageningen, Netherlands: Pudoc.,1982: 114-135.
[53]Ritchie J T, Otter S. Description and performance of CERES-Wheat: A user oriented wheat yield model. USDAARS:ARS38, 1985: 159-175..
[54]曹永华. 美国CERES 作物模拟模型及其应用. 世界农业, 1991(9): 52-55.
[55]Bouman B A M, Kropff M J, Tuong T P. ORYZA2000:Modeling lowland rice. Los Banos: IRRI and WageningenUniversity, 2001: 235.
[56]何英彬,陈佑启,唐华俊. 基于MODIS反演逐日LAI 及SIMRIW模型的冷害对水稻单产的影响研究. 农业工程学报, 2007, 23(11): 188-194.
[57]李亚龙,崔远来,李远华. 水—氮联合限制条件下对水稻生产模型ORYZA2000 的验证与评价. 灌溉排水学报, 2005, 24(1): 28-32, 44.
[58]戚昌瀚, 殷新佑, 刘桃菊, 等. 水稻生长日历模拟模型(RICAM)的调控决策系统(RICOS)研究. 江西农业大学学报, 1994, 16(4): 323-327.
[59]郑国清. 浅论对水稻发育期模型的认识. 中国农业气象, 1999, 20(2): 31-34.
[60]冯利平, 高亮之, 金之庆, 等. 小麦发育期动态模拟模型的研究. 作物学报, 1997, 23(4): 418-424.
[61]潘学标, 韩湘玲, 石元春. COTGROW: 棉花生长发育模拟模型. 棉花学报, 1996, 8(4): 180-188.
[62]沈国权. 影响作物发育速度的非线性温度模式. 气象,1980(6): 9-11.
[63]戚昌瀚, 殷新佑, 谢华蔼. 水稻产量形成的生长日历模拟模型的初步研究. 江西农业大学学报, 1991(专刊2):29-43.
[64]Gao L Z, Jin Z Q, Huang Y, et al. Rice clock model: Acomputer model to simulate rice development. Agriculturaland Forest Meteorology, 1992, 60(1-2): 1-16.
[65]Yin X Y. A nonlinear model to quantify temperature effecton rice phenology and its application. Acta AgronomicaSinica, 1994, 20(6): 692-700.
[66]Meng Y L, Cao W X, Zhou Z G. A Process-based Modelfor Simulation Phasic Development and Phenology inRice. Scientia Agricultura Sinica, 2003, 36(11):1362-1367.
[67]Yan M C, Cao W X, Li C D, et al. Validation and evaluationof amechanistic model of phasic and phenologicaldevelopment of wheat. Scientia Agricultura Sinica, 2000,33(2): 43-50.
[68]Yan M C, Cao W Y, Luo W. A mechanistic model of phasicand phenological development of wheat.I: Assumptionand description of the model. Chinese Journal of ApplliedEcology, 2000, 11(3): 355-359.
[69]陈小虎,曾习农,黄江青,等. 籼型水稻生长发育实效积温的确定及相关性研究. 作物研究, 2005, 19(3):143-146.
[70]王尚明, 张崇华, 胡逢喜, 等. 空气温度对水稻生长影响的数学模拟. 江西农业学报, 2007, 19(10): 16-18.
[71]付荣, 段有, 高全. 春小麦播种出苗期当量积温的计算及应用分析. 吉林气象, 2005(2): 23, 30.
[72]Robertson G W. Development of simplified agroclimaticprocedures for assessing temperature effects on crop development//Slatyer R O. Plant Response to Climatic Factors.Paris: UNESCO, Philippine Weather Bureau, 1973:327-343.
[73]Bouman B A M, Van Laar H H. Description and evaluationof the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 2006, 87(3): 249-273.
[74]Das L, Lohar D, Sadhukhan I, et al. Evaluation of the performanceof ORYZA2000 and assessing the impact of climatechange on rice production in Gangetic West Bengal.Journal of Agrometeorology, 2007, 9(1): 1-10.
[75]陈华, 张立中, 方娟. 小麦发育动态模拟模型的初步研究. 中国农业气象, 1995, 16(1): 1-4.
[76]郑国清,高亮之. 玉米发育期动态模拟模型. 江苏农业学报, 2000, 16(1): 15-21.
[1] 曹阳,甄峰. 基于智慧城市的可持续城市空间发展模型总体架构[J]. 地理科学进展, 2015, 34(4): 430-437.
[2] 刘勇,张韶月,柳林,王先伟,黄华兵. 智慧城市视角下城市洪涝模拟研究综述[J]. 地理科学进展, 2015, 34(4): 494-504.
[3] 王晓蕾,孙林,张宜清,罗毅. 中亚阿姆河上游产流过程特征研究[J]. 地理科学进展, 2015, 34(3): 364-372.
[4] 罗静, 陈琼, 刘峰贵, 张镱锂, 周强. 青藏高原河谷地区历史时期耕地格局重建方法探讨——以河湟谷地为例[J]. 地理科学进展, 2015, 34(2): 207-216.
[5] 钱春蕾,叶菁,陆潮. 基于改进城市引力模型的武汉城市圈引力格局划分研究[J]. 地理科学进展, 2015, 34(2): 237-245.
[6] 秦耀辰,李旭,荣培君. 基于改进EIO-LCA模型的城市旅游业碳排放核算研究—以开封市为例[J]. 地理科学进展, 2015, 34(2): 132-140.
[7] 牛方曲, 王志强, 胡月, 宋涛, 胡志丁. 基于经济社会活动视角的城市空间演化过程模型[J]. 地理科学进展, 2015, 34(1): 30-37.
[8] 叶信岳, 李晶晶, 程叶青. 浙江省经济差异时空动态的多尺度与多机制分析[J]. 地理科学进展, 2014, 33(9): 1177-1186.
[9] 伊璇, 周丰, 王心宇, 杨永辉, 郭怀成. 基于SOM 的流域分类和无资料区径流模拟[J]. 地理科学进展, 2014, 33(8): 1109-1116.
[10] 彭建, 马晶, 袁媛. 城市边缘带识别研究进展与展望[J]. 地理科学进展, 2014, 33(8): 1068-1077.
[11] 江净超, 朱阿兴, 秦承志, 刘军志, 陈腊娇, 吴辉. 分布式水文模型软件系统研究综述[J]. 地理科学进展, 2014, 33(8): 1090-1100.
[12] 张海军. 河南省火灾影响因素的空间分析[J]. 地理科学进展, 2014, 33(7): 958-968.
[13] 郑姗姗, 万庆, 贾明元. 基于STARMA模型的城市暴雨积水点积水短时预测[J]. 地理科学进展, 2014, 33(7): 949-957.
[14] 刘凤山, 陶福禄, 肖登攀, 张帅, 王猛, 张贺. 土地利用类型转换对地表能量平衡和气候的影响——基于SiB2模型的模拟结果[J]. 地理科学进展, 2014, 33(6): 815-824.
[15] 廖梦娜, 于革. 3 万年来亚洲降水与大气环流变化重建和模拟综述[J]. 地理科学进展, 2014, 33(6): 807-814.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 地理科学进展
技术支持: 北京玛格泰克科技发展有限公司