地理科学进展 ›› 2012, Vol. 31 ›› Issue (5): 655-663.doi: 10.11820/dlkxjz.2012.05.015
• 生态环境 • 上一篇
耿元波1, 史晶晶1,2
收稿日期:
2011-10-01
修回日期:
2012-02-01
出版日期:
2012-05-25
发布日期:
2012-05-25
作者简介:
耿元波(1969-),男,博士,副研究员,主要研究方向为环境生物地球化学。E-mail:gyb0741@sina.com
基金资助:
国家自然科学基金项目(41071138);中国科学院地理科学与资源研究所自主部署创新项目(200905009)。
GENG Yuanbo1, SHI Jingjing1,2
Received:
2011-10-01
Revised:
2012-02-01
Online:
2012-05-25
Published:
2012-05-25
摘要: 草原凋落物的分解是草原生态系统物质循环的主要环节, 其中植物营养元素的释放和累积对退化草场恢复的进程和质量有着重要意义。本文从凋落物自身的性质、外部环境因素(生物及非生物因子)、混合效应等对凋落物分解速率的影响以及凋落物分解时植物营养元素的释放和累积两个方面论述了国内外对草原凋落物的分解及营养元素的生物地球化学行为的研究现状。一般情况下, 草原凋落物分解速率与凋落物自身的N、P、K等元素含量正相关, 与C/N、C/P、木质素、纤维素等的比值或含量值负相关, 而与周围环境中营养元素的组成及含量的关系不大。混合凋落物中不同种类凋落物的N、P含量及物种丰富度影响着非加性效应作用的效果。在凋落物分解过程中, 总体趋势表现为分解初级阶段对N的积累, 对P 和K的释放, 而对Na、Ca、Mg等营养元素来说, 随物种和根茎叶等部位的不同规律也不一样。凋落物中各元素的含量、凋落物分解阶段、物种类型、非加性效应、土壤环境等都是影响其营养元素释放和累积的因素。据此, 本文展望了草原凋落物未来可能的研究方向, 指出多因子的交互作用对草原凋落物分解的影响、凋落物混合分解机制探究、某些大量及微量营养元素的释放和累积可能是未来需要研究的重点。
耿元波, 史晶晶. 草原凋落物的分解及营养元素的释放和累积[J]. 地理科学进展, 2012, 31(5): 655-663.
GENG Yuanbo, SHI Jingjing. Influencing Factors of Grassland Litter Decomposition and Nutrient Release and Accumulation[J]. PROGRESS IN GEOGRAPHY, 2012, 31(5): 655-663.
[1] 赵吉, 邵玉琴, 孔祥辉. 皇甫川地区枯枝落叶的分解及其对土壤生物环境的影响. 农业环境保护, 2002, 21(6):543-545.[2] 张建利, 张文, 高玲苹, 等. 云南马龙县山地封育草地凋落物分解与氮释放的研究. 草业科学, 2008, 25(7):77-82.[3] Facell J M, Pickett S T A. Plant litter: Its dynamics and effectson plant community structure. Botanical Review,1991, 57(1): 1-32.[4] 郭继勋. 羊草草原分解者亚系统. 长春: 吉林大学出版社, 1994.[5] 郭继勋, 孙刚. 松嫩平原羊草草原凋落物层群落学作用的研究. 植物生态学报, 2000, 24(4): 473-476.[6] 王堃. 草地植被恢复与重建. 北京: 化学工业出版社,2004: 1-260.[7] Raiesi F, Asadi E. Soil microbial activity and litter turnoverin native grazed and ungrazed rangelands in a semiaridecosystem. Biology and Fertility of Soils, 2006, 43(1): 76-82.[8] Olofsson J, Oksanen L. Role of litter decomposition forthe increased primary production in areas heavily grazedby reindeer: A litterbag experiment. Oikos, 2002, 96(3):507-515.[9] Semmartin M, Aguiar M R, Distel R A, et al. Litter qualityand nutrient cycling affected by grazing-induced speciesreplacements along a precipitation gradient. Oikos,2004, 107(1): 148-160.[10] Dubeux J C B, Sollenberger L E, Interrante S M, et al. Litterdecomposition and mineralization in bahiagrass pasturesmanaged at different intensities. Crop Science,2006, 46(3): 1305-1310.[11] Garibaldi L A, Semmartin M, Chaneton E J. Grazing-inducedchanges in plant composition affect litter qualityand nutrient cycling in flooding Pampa grasslands. Oecologia,2007, 151(4): 650-662.[12] Mapfumo E, Naeth M A, Baron V S, et al. Grazing impactson litter and roots: Perennial versus annual grasses.Journal of Range Management, 2002, 55(1): 16-22.[13] Semmartin M, Garibaldi L A, Chaneton E J. Grazing historyeffects on above- and below-ground litter decompositionand nutrient cycling in two co-occurring grasses.Plant and Soil, 2008, 303(1-2): 177-189.[14] 程积民, 万惠娥, 胡相明, 等. 半干旱区封禁草地凋落物的积累与分解. 生态学报, 2006, 26(4): 1207-1212.[15] Smith V C, Bradford MA. Litter quality impacts on grasslandlitter decomposition are differently dependent onsoil fauna across time. Applied Soil Ecology, 2003, 24(2): 197-203.[16] Bradford M A, Tordoff G M, Eggers T, et al. Microbiota,fauna, and mesh size interactions in litter decomposition.Oikos, 2002, 99(2): 317-323.[17] Henry H A L, Brizgys K, Field C B. Litter decompositionin a california annual grassland: Interactions betweenphotodegradation and litter layer thickness. Ecosystems,2008, 11(4): 545-554.[18] Austin A T, Vivanco L. Plant litter decomposition in asemi-arid ecosystem controlled by photodegradation. Nature,2006, 442: 555-558.[19] Hoorens B, Aerts R, Stroetenga M. Elevated UV-B radiationhas no effect on litter quality and decomposition oftwo dune grassland species: Evidence from a long-termfield experiment. Global Change Biology, 2004, 10(2):200-208.[20] Brandt L A, King J Y, Milchunas D G. Effects of ultravioletradiation on litter decomposition depend on precipitationand litter chemistry in a shortgrass steppe ecosystem.Global Change Biology, 2007, 13(10): 2193-2205.[21] Dukes J S, Hungate B A. Elevated carbon dioxide and litterdecomposition in California annual grasslands: Whichmechanisms matter? Ecosystems, 2002, 5(2): 171-183.[22] Hu S, Chapin III F S, Firestone M K, et al. Nitrogen limitationof microbial decomposition in a grassland under elevatedCO2. Nature, 2001, 409(6817): 188-191.[23] Dukes J S, Field C B. Diverse mechanisms for CO2 effectson grassland litter decomposition. Global ChangeBiology, 2000, 6(2): 145-154.[24] King R F, Dromph K M, Bardgett R D. Changes in speciesevenness of litter have no effect on decompositionprocesses. Soil Biology & Biochemistry, 2002, 34(12):1959-1963.[25] Steinaker D F, Wilson S D. Belowground litter contributionsto nitrogen cycling at a northern grassland-forestboundary. Ecology, 2005, 86(10): 2825-2833.[26] Koukoura Z, Mamolos A P, Kalburtji K L. Decompositionof dominant plant species litter in a semi-arid grassland.Applied Soil Ecology, 2003, 23(1): 13-23.[27] Moretto A S, Distel R A, Didone N G. Decompositionand nutrient dynamic of leaf litter and roots from palatableand unpalatable grasses in a semi-arid grassland. AppliedSoil Ecology, 2001, 18(1): 31-37.[28] Vivanco L, Austin A T. Intrinsic effects of species on leaflitter and root decomposition: A comparison of temperategrasses from North and South America. Oecologia, 2006,150(1): 97-107.[29] Personeni E, Loiseau P. Species strategy and N fluxes ingrassland soil: A question of root litter quality or rhizosphereactivity? European Journal of Agronomy, 2005, 22(2): 217-229.[30] Murphy K L, Burke I C, Vinton MA, et al. Regional analysisof litter quality in the central grassland region ofNorth America. Journal of Vegetation Science, 2002,13(3): 395-402.[31] Aerts R, Hannie D C, Beltman B. Plant community mediatedvs. nutritional controls on litter decomposition ratesin grasslands. Ecology, 2003, 84(12): 3198-3208.[32] Liu P, Sun O J, Huang J H, et al. Nonadditive effects oflitter mixtures on decomposition and correlation with initiallitter N and P concentrations in grassland plant speciesof northern China. Biology and Fertility of Soils,2007, 44(1): 211-216.[33] Patrick L B, Fraser L H, Kershner M W. Large-scale manipulationof plant litter and fertilizer in a managed successionaltemperate grassland. Plant Ecology, 2008, 197(2): 183-195.[34] Manning P, Saunders M, Bardgett R D, et al. Direct andindirect effects of nitrogen deposition on litter decomposition.Soil Biology & Biochemistry, 2008, 40(3): 688-698.[35] Liu P, Huang J H, Han X G, et al. Differential responsesof litter decomposition to increased soil nutrients and waterbetween two contrasting grassland plant species of InnerMongolia, China. Applied Soil Ecology, 2006, 34(2-3): 266-275.[36] Hobbie S E. Contrasting effects of substrate and fertilizernitrogen on the early stages of litter decomposition. Ecosystems,2005, 8(6): 644-656.[37] 吴庆标, 王效科, 欧阳志云. 活性有机碳含量在凋落物分解过程中的作用. 生态环境, 2006, 15(6): 1295-1299.[38] 孙晓芳, 黄建辉, 王猛, 等. 内蒙古草原凋落物分解对生物多样性变化的响应. 生物多样性, 2009, 17(4):397-405.[39] 刘忠宽, 汪诗平, 韩建国, 等. 内蒙古温带典型草原植物凋落物和根系的分解及养分动态的研究. 草业学报,2005, 14(1): 24-30.[40] 廖仰南, 张桂枝, 赵吉. 草原羊草(Aneurolepidium chinen?sis)和大针茅(Stipa grandis)不同物候期植株分解的微生物特性//中国科学院草原生态系统定位站. 草原生态系统研究. 第4 集. 北京: 科学出版社, 1992: 151-159.[41] 郭继勋. 羊草草地营养元素的吸收、积累和归还. 中国草原, 1986(5): 31-34.[42] Cartner T B, Cardon Z G. Decomposition dynamics inmixed-species leaf litter. Oikos, 2004, 104(2): 230-246.[43] Gijsman A J, Alarcón H F, Thomas R J. Root decompositionin tropical grasses and legumes as affected by soiltexture and season. Soil Biology & Biochemistry, 1997,29(9-10): 1443-1450.[44] Hunt H, Ingham E, Coleman D, et al. Nitrogen limitationof production and decomposition in prairie, mountainmeadow, and pine forest. Ecology, 1988, 69(4):1009 -1016.[45] Kemp P R, Deborah G W, Clenton E O, et al. Effects ofelevated CO2 and nitrogen fertilization pretreatments ondecomposition on tallgrass prairie leaf litter. Plant Soil,1994, 165(1): 115-127.[46] Martinez-Yrizar A, Nunez S, Burquez A. Leaf litter decompositionin a southern Sonoran Desert ecosystem,northwestern Mexico: Effects of habitat and litter quality.Acta Oecologica-International Journal of Ecology, 2007,32(3): 291-300.[47] Smith V C, Bradford M A. Do non-additive effects on decompositionin litter-mix experiments result from differencesin resource quality between litters? Oikos, 2003,102(2): 235-243.[48] Swift M J, Heal O W, Anderson J M. Decomposition interrestrial ecosystems. Berkeley: University of CaliforniaPress, 1979.[49] Taylor B R, Parkinson D, Parsons W F J. Nitrogen andlignin content as predictors of litter decay rates: a microcosmtest. Ecology, 1989, 70(1): 97-104.[50] Thomas R J, Asakawa N M. Decomposition of leaf litterfrom tropical forage grasses and legumes. Soil Biology &Biochemistry, 1993, 25(10): 1351-1361.[51] Vossbrinck C R, Coleman D C, Woolley T A. Abiotic andBiotic Factors in Litter Decomposition in a SermiaridGrassland. Ecology, 1979, 60(2): 265-271.[52] 耿元波. 锡林河流域主要草原类型的生物地球化学研究[D]. 北京: 中国科学院地理科学与资源研究所, 2001.[53] Cornelissen J H C. An experimental comparison of leafdecomposition rates in a wide range of temperate plantspecies and types. Journal of Ecology, 1996, 84(4):573-582.[54] 曲浩, 赵学勇, 赵哈林, 等. 陆地生态系统凋落物分解研究进展. 草业科学, 2010, 27(8): 44-51.[55] 李学斌, 马林, 陈林, 等. 草地枯落物分解研究进展及展望. 生态环境学报, 2010, 19(9): 2260-2264.[56] 廖仰南, 赵吉, 张桂枝. 羊草和大针茅凋落物分解及其微生物学效应. 植物生态学与地植物学学报, 1989, 13(4): 359-366.[57] Blair J M, Parmelee R W, Beare M H. Decay rates, nitrogenfluxes, and decomposer communiies of single-andmixed-species foliar litter. Ecology, 1990, 71(5):1976-1985.[58] Hector A, Beale A, Minns A, et al. Consequences of the reduction of plant diversity for litter decomposition: Effectsthrough litter quality and microenvironment. Oikos,2000, 90(2): 357-371.[59] Scherer-Lorenzen M. Functional diversity affects decompositionprocesses in experimental grasslands. FunctionalEcology, 2008, 22(3): 547-555.[60] 王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对3 种草原植物群落混合凋落物分解的影响. 植物生态学报,2000, 24(6): 674-679.[61] Vitousek P M, Turner D R, Parton W J, et al. Litter decompositionon the Mauna Loa environmental matrix,Hawaii: Patterns, mechanisms, and models. Ecology,1994, 75(2): 418-429.[62] 黄德华,陈佐忠. 用红外线CO2 分析仪测定凋落物形成、分解与积累//中国科学院草原生态系统定位站. 草原生态系统研究. 第2 集. 北京: 科学出版社, 1988:217-223.[63] 尹承军,黄德华,陈佐忠. 内蒙古典型草原4 种植物凋落物分解速率与气候因子之间的定量关系. 生态学报,1994, 14(2): 149-154.[64] Hoorens B, Aerts R, Stroetenga M. Litter quality and interactiveeffects in litter mixtures: More negative interactionsunder elevated CO2? Journal of Ecology, 2002, 90(6): 1009-1016.[65] 陈瑾, 李扬, 黄建辉. 内蒙古典型草原4 种优势植物凋落物的混合分解研究. 植物生态学报, 2011, 35(1): 9-16.[66] Dimitrakopoulos P G. Influence of evenness on the litter-species richness-decomposition relationship in Mediterraneangrasslands. Journal of Plant Ecology, 2010, 3(2): 71-78.[67] 龙章富, 刘世贵. 退化草地土壤农化性状与微生物区系研究. 土壤学报, 1996, 33(2): 192-200.[68] 金钊, 齐玉春, 董云社. 干旱半干旱地区草原灌丛荒漠化及其生物地球化学循环. 地理科学进展, 2007, 26(4):23-32.[69] 刘全友, 童依平, 李继云, 等. 多伦县土壤营养元素有效态含量的影响因素研究. 生态学报, 2000, 20(6):1034-1037.[70] 耿元波, 章申, 董云社, 等. 无牧草原生态系统营养元素的生物地球化学特征. 应用生态学报, 2003, 14(2):219-222.[71] Moretto A S, Distel R A. Decomposition of and nutrientdynamics in leaf litter and roots of Poa ligularis and Stipagyneriodes. Journal of Arid Environments, 2003, 55(3):503-514.[72] Seastedt T R. Mass, nitrogen, and phosphorus dynamicsin foliage and root detritus of tallgrass prairie. Ecology,1988, 69(1): 59-65.[73] Koukoura Z. Decomposition and nutrient release from C3and C4 plant litters in a natural grassland. Acta Oecologica,1998, 19(2): 115-123.[74] Liu K, Sollenberger L E, Silveira M L, et al. Grazing Intensityand Nitrogen Fertilization Affect Litter Responsesin'Tifton 85'Bermudagrass Pastures: II. Decompositionand Nitrogen Mineralization. Agronomy Journal, 2011,103(1): 163-168.[75] Garibaldi L A, Semmartin M, Chaneton E J. Grazing-inducedchanges in plant composition affect litter qualityand nutrient cycling in flooding Pampa grasslands. Oecologia,2007, 151(4): 650-662.[76] 赵吉, 廖仰南, 张桂枝. 羊草和大针茅不同物候期植株的分解及其主要营养元素的转化//中国科学院草原生态系统定位站. 草原生态系统研究. 第4 集. 北京: 科学出版社, 1992: 161-169.[77] 陈佐忠, 黄德华. 内蒙古典型草原栗钙土地带几种植物凋落物分解速率与分解过程研究//中国科学院草原生态系统定位站. 草原生态系统研究. 第4 集. 北京: 科学出版社, 1992: 31-39.[78] Liu P, Huang J H, Han X G, et al. Litter Decompositionin Semiarid Grassland of Inner Mongolia, China. RangelandEcology & Management, 2009, 62(4): 305-313.[79] 邵玉琴, 赵吉, 杨劼. 内蒙古皇甫川流域凋落物分解过程中营养元素的变化特征. 水土保持学报, 2004, 18(3):81-84.[80] 杜占池, 樊江文, 钟华平. 营养元素在红三叶叶片分解过程中的释放动态. 草业科学, 2003, 20(7): 12-15. |
[1] | 董晓宇, 姚华荣, 戴君虎, 朱梦瑶. 2000—2017年内蒙古荒漠草原植被物候变化及对净初级生产力的影响[J]. 地理科学进展, 2020, 39(1): 24-35. |
[2] | 于海达, 杨秀春, 徐斌, 金云翔, 高添, 李金亚. 草原植被长势遥感监测研究进展[J]. 地理科学进展, 2012, 31(7): 885-894. |
[3] | 吕 君,吴必虎. 中国草原旅游研究的进展与展望[J]. 地理科学进展, 2010, 29(4): 403-410. |
[4] | 金钊,齐玉春,董云社. 干旱半干旱地区草原灌丛荒漠化及其 生物地球化学循环[J]. 地理科学进展, 2007, 26(4): 23-32. |
[5] | 金钊,齐玉春,董云社. 干旱半干旱地区草原灌丛荒漠化及其 生物地球化学循环[J]. 地理科学进展, 2006, 25(5): 23-32. |
[6] | 刘钦普,林振山. 内蒙古草原羊草群落优势物种对气候变暖的响应[J]. 地理科学进展, 2006, 25(1): 63-71. |
[7] | 陈玉福, 刘彦随, 阎建苹. 论我国草原牧区畜牧业与乡村发展[J]. 地理科学进展, 2005, 24(3): 17-24. |
[8] | 杨小红, 董云社, 齐玉春, 耿元波, 刘立新. 内蒙古羊草草原土壤净氮矿化研究[J]. 地理科学进展, 2005, 24(2): 30-37. |
[9] | 李永华, 王五一, 杨林生, 李海蓉. 汞的环境生物地球化学研究进展[J]. 地理科学进展, 2004, 23(6): 33-40. |
[10] | 季宏兵, 王立军, 董云社, 王世杰, 罗建美, 孙媛媛. 稀土元素的环境生物地球化学循环研究现状[J]. 地理科学进展, 2004, 23(1): 51-61. |
|