地理科学进展 ›› 2011, Vol. 30 ›› Issue (9): 1125-1134.doi: 10.11820/dlkxjz.2011.09.007
董泰锋, 蒙继华, 吴炳方, 杜鑫, 钮立明
收稿日期:
2010-08-01
修回日期:
2011-01-01
出版日期:
2011-09-25
发布日期:
2011-09-25
通讯作者:
蒙继华, E-mail: mengjh@irsa.ac.cn
作者简介:
董泰锋(1985-),汉,广东人,博士研究生,主要从事农业遥感研究。E-mail: dtf040105@163.com
基金资助:
国家科技支撑计划项目(2008BADA8B00-2);中国科学院知识创新工程重大项目(KSCX-YW-09-01)。
DONG Taifeng, MENG Jihua, WU Bingfang, Du Xin, NIU Liming
Received:
2010-08-01
Revised:
2011-01-01
Online:
2011-09-25
Published:
2011-09-25
摘要: 光合有效辐射(Photo-synthetically Active Radiation, PAR )是研究全球变化与陆地生态系统变化的核心之一,不仅是衡量生态系统光合作用变化、碳收支变化的重要数据来源,也是反映全球气候变化主要驱动因子。本文在回顾PAR估算方法的基础上,综合分析了传统方法中的气候学方法、模型参数方法,及在此基础上发展起来的基于遥感的转换系数、模型化参数法的优缺点,并对PAR估算方法研究做出了展望。气候学法、模型参数法等传统方法一直是进行PAR估算的常用手段。然而,随着对生态系统研究的日益深入,基于遥感的估算方法已经成为一种新的手段,凭借遥感覆盖范围广的优势,它使得获取区域乃至全球PAR估算成为可能。因此,如何利用遥感数据获取长时间序列PAR,成为目前关注的重点之一。已有研究表明,查找表方法之类的定量化估算方法将成为主要的估算方法,它不仅在机理上解释了PAR的传输过程,而且增强了估算方法的可靠性、可操作性与普适性。
董泰锋, 蒙继华, 吴炳方, 杜鑫, 钮立明. 光合有效辐射(PAR)估算的研究进展[J]. 地理科学进展, 2011, 30(9): 1125-1134.
DONG Taifeng, MENG Jihua, WU Bingfang, Du Xin, NIU Liming. Overview on the Estimation of Photosynthetically Active Radiation[J]. PROGRESS IN GEOGRAPHY, 2011, 30(9): 1125-1134.
[1] 左大康, 周允华, 项月琴, 等. 地球表层辐射研究. 北京:科学出版社, 1991.[2] Li Z Q, Moreau L, Cihlar J. Estimation of photosynthoticallyactive radiation absorbod at the surface. Journal ofGeophysical Research,1997, 102(D24): 29717-29727.[3] 孙菽芬. 陆面过程的物理、生化机理和参数化模型. 北京: 气象出版社, 2005.[4] Monteith J L. Solar radiation and productivity in tropicalecosystems. Journal of Application of Ecology, 1972, 9(4): 747-766.[5] Liang S, Pinker R, Running S, et al. PAR and Insolation.http://landportal.gsfc.nasa.gov/Documents/ESDR/PARISR_ Liang_whitepaper.pdf[2010-08].[6] 周允华. 光合有效辐射(PAR)的测量. 北京: 气象出版社, 1990: 3-14[7] Monteith J L. Climate and the efficiency of crop productionin Britain. Philosophical Transactions of the RoyalSociety of London Series B: Biological Sciences, 1977,B(281): 277-294.[8] 黄秉维. 现代自然地理学. 北京: 科学出版社, 1999.[9] 董振国, 于沪宁. 农田光合有效辐射观测与分析. 气象,1983(7): 23-25.[10] 王炳忠, 税亚欣. 关于光合有效辐射的气候学计算问题. 太阳能学报, 1988, 9(1): 59-65.[11] 周允华, 项月琴. 光合有效量子通量密度的气候学计算. 气象学报, 1996, 54(4): 447-455.[12] 周允华, 项月琴. 太阳直接辐射光量子通量的气候学计算方法. 地理学报, 1987, 42(2): 116-128.[13] 张运林, 秦伯强. 太湖地区光合有效辐射(PAR)的基本特征及其气候学计算. 太阳能学报, 2002, 23(1):118-123.[14] 李韧, 季国良, 杨文, 等. 青藏高原北部光合有效辐射的观测研究. 太阳能学报, 2007, 28(3): 241-247.[15] 姚济敏, 高晓清, 冯起, 等. 额济纳绿洲沙尘暴天气下光合有效辐射的基本特征. 太阳能学报, 2006, 27(5):484-488.[16] 李刚, 辛晓平, 范闻捷, 等. 内蒙古草地关键光合过程参数的时空变化特征. 资源科学, 2008, 30(9): 1375-1381.[17] 白建辉. 华北地区光合有效辐射的计算方法研究. 气象与环境学报, 2009, 25(4): 1-8.[18] M?ttus M, Ross J, Sulev M. Experimental study of ratioof PAR to direct integral solar radiation under cloudlessconditions. Agricultural and Forest Meteorology, 2001,109(9): 161-170.[19] Alados I, Foyo-Moreno I, Alados-Arboledas L. Photosyntheticallyactive radiation: Measurements and modelling.Agricultural and Forest Meteorology, 1996, 78(1-2):121-131.[20] Alados I, Alados-Arboledas L. Validation of an empiricalmodel for photosynthetically active radiation. InternationalJournal of Climatology, 1999, 19(10): 1145-1152.[21] González J A,Calbó J. Modelled and measured ratio ofPAR to global radiation under cloudless skies. Agriculturaland Forest Meteorology, 2002, 110(4): 319-325.[22] Gu L, Baldocchi D, Verma S B, et al. Advantages of diffuseradiation for terrestrial ecosystem productivity. Journalof Geophysical Research, 2002, 107, D56,doi:10.1029/2001dj001242.[23] Jacovides C P, Tymvios F S, Assimakopoulos V D, et al.The dependence of global and diffuse PAR radiation componentson sky conditions at Athens, Greece. Agriculturaland Forest Meteorology 2007, 143(3-4): 277-287.[24] 童成立, 张文菊, 汤阳. 逐日太阳辐射的模拟计算. 中国农业气象, 2005, 26(3): 165-169.[25] 朱旭东, 何洪林, 刘敏. 近50 年中国光合有效辐射的时空变化特征. 地理学报, 2010, 65(3): 270-279.[26] Winslow J C, Hunt E R, Piper S C. A globally applicablemodel of daily solar irradiance estimated from air temperatureand precipitation data. Ecological Modelling, 2001,143(3): 227-243.[27] Pinker R T, Laszlo I. Global distribution of photosyntheticallyactive radiation as observed from satellites. Journalof Climate, 1992, 5(1): 56-65.[28] Pinker R T, Laszlo I. Modeling surface solar irradiancefor satellite applications on global scale. Journal of AppliedMeteorology, 1992, 31(2): 194-211.[29] Lopez G, Rubio M A, Martinez M, et al. Estimation ofhourly global photosynthetically active radiation using artificialNeural Network models. Agricultural and ForestMeteorology, 2001, 107(4): 279-297.[30] Nojd P, Har P. Instantaneous PAR estimated using long recordsof daily temperature and rainfall. Agricultural andForest Meteorology, 2001, 109(1): 47-59.[31] Grant R H, Slusser J R. Estimation of Photosynthetic PhotonFlux Density from 368-nm Spectral Irradiance. Journalof Atmospheic and Oceanic Technlogy, 2004, 21(3):481-487.[32] Bird R E, Riordan C. Simple solar spectral model for directand diffuse irradiance on horizontal and tilted planesat the earth's surface for cloudless atmospheres. Journulof Applied Meteorology and Climatology, 1986, 25(1):87-97.[33] Gueymard C. An atmospheric transmittance model forthe clear sky beam, diffuse and global photosyntheticallyactive radiation. Agricultural and Forest Meteorology,1989, 45(3-4): 215-229.[34] Gueymard C. A two-band model for the calculation ofclear sky solar irradiance, illuminance, and photosyntheticallyactive radiation at the earth's surface. Solar Energy,1989, 43(5): 253-265.[35] Mueller R W, Dagestad K F, Ineichen P, et al. Rethinkingsatellite based solar irradiance modelling: The SOLISclear-sky module. Remote Sensing of Environment,2004, 91(2): 160-174.[36] 刘高荣, 刘纪远, 庄大方. 基于MODIS数据估算晴空陆地光合有效辐射. 地理学报, 2004, 59(1): 64-73.[37] Alados I, Foyo-Moreno I, Olmo F J, et al. Improved estimationof diffuse photosynthetically active radiation usingtwo spectral models. Agricultural and Forest Meteorology,2002, 111(3): 1-12.[38] Alados-Arboledas L, Olmo F J, Alados I, et al. Parametricmodels to estimate photosynthetically active radiation inSpain. Agricultural and Forest Meteorology, 2000, 101(2-3): 187-201.[39] Gueymard C. Critical analysis and performance assessmentof clear sky solar irradiance models using theoreticaland measured data. Solar Energy, 1993, 51(2):121-138.[40] Alados I, Olmo F J, Foyo-Moreno I, et al. Estimation ofphotosynthetically active radiation under cloudy conditions.Agricultural and Forest Meteorology, 2000, 102(1-2): 39-50.[41] Wang Q, Tenhunen J, Schmidt M, et al. Diffuse PAR irradianceunder clear skies in complex alpine terrain. Agriculturaland Forest Meteorology, 2005, 128(1-2): 1-15.[42] Wang Q, Tenhunenb J, Schmidt M, et al. Estimation of total,direct and diffuse PAR under clear skies in complexalpine terrain of the National Park Berchtesgaden, Germany.Ecological Modelling, 2006, 196(1-2): 149-162.[43] Bosch J L, Lopez, Batlles F J, et al. Global and direct photosyntheticallyactive radiation parameterizations forclear-sky conditions. Agricultural and Forest Meteorology,2009, 149(1): 146-158.[44] Running S W, Nemani R, Glassy M, et al. MODIS DailyPhotosynthesis (Psn) And Annual Net Primary Production(NPP) Product (Mod17). Algorithm Theoretical BasisDocument, 1999.[45] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystemproduction:A process model based on global satelliteand surface data. Global Biogeochem. Cycles, 1993, 7(4): 811-841.[46] Pinker R T, Tarpley J D, Laszlo I, et al. Surface radiationbudgets in support of the GEWEX Continental Scale InternationalProject (GCIP) and the GEWEX AmericasPrediction ProjectGAPP), including the North AmericanLand Data Assimilation System(NLDAS) Project. J. Geophys.Res., 108(D22), 8844, doi:10.1029/2002JD003301.[47] Runnstr?m M, Brogaard S, Olsson L. Estimation of PARover Northern China from Daily NOAA AVHRR CloudCover Classifications. Geocarto International, 2006, 21(1): 51-60.[48] Rubio M A, Lo′pez G, Tovar J. The use of satellite measurementsto estimate photosynthetically active radiation.Physics and Chemistry of the Earth, 2005, 30(1-3):159-164.[49] Gu J, Smith E A. High-resolution estimates of total solarand PAR surface fluxes over large-scale BOREAS studyarea from GOES measurements. Journal of GeophysicalResearch-Atmospheres, 1997, 102(D24): 29, 685-629,705, doi:10.1029/96JD03706.[50] Frouin R, Franz B, Wang M, et al. Algorithm to estimatePAR from SeaWiFS data Version 1.2-Documentation,2001.[51] Carder K, Chen R, Hawes S, et al. Instantaneous PthosyntheticallyAvailable radiation and Absorbed Radiation byPhotoplankton MODIS Ocean Science Team AlgorithmTheoretical Basic Document, 2003.[52] Singh S, Raman K, Dwivedi R M, et al. An approach tocompute Photosynthetically Active Radiation using IRSP4 OCM. International Journal of Remote Sensing, 2008,29(1-2): 211-220.[53] Laake P E V, Sanchez-Azofeifa G A. Simplified atmosphericradiative transfer modelling for estimating incidentPAR using MODIS atmosphere products. RemoteSensing of Environment, 2004, 91(1): 98-113.[54] Van Laake P E, Sanchez-Azofeifa G A. Mapping PAR usingMODIS atmosphere products. Remote Sensing of Environment,2005, 94(1): 554-563.[55] Olofsson P, Eklundh L, Lagergren F, et al. Estimation ofabsorbed PAR across Scandinavia from satellite measurementsPart I: Incident PAR. Remote Sensing of Environment,2007, 110(2): 252-261.[56] 谢小萍, 高志强, 高炜, 等. 基于MODIS 产品估算复杂地形下的光合有效辐射. 遥感学报, 2009, 13(5):778-791.[57] 陈良富, 高彦华, 李丽, 等. 基于MODIS 晴空数据的森林日净第一性生产力估算. 中国科学D 辑: 地球科学,2007, 37(11): 1515-1521.[58] Chen L, Gao Y, Yang L, et al. MODIS-derived daily PARsimulation from cloud-free images and its validation. SolarEnergy, 2008, 82(6): 528-534.[59] Su W, Charlock T P, et al. Photosynthetically active radiationfrom clouds and the earth's radiant energy system(CERES) products. Journal of Geophysical Research,2007, 112. G02022, doi:10.1029/2006JG000290.[60] Liang S, Zheng T, Wang D, et al. Mapping high-resolutionincident photosynthetically active radiation over landfrom polar: Orbiting and geostationary satellite data.Phothgrammetric Engineering & Remote Sensing, 2007,73(10): 1085-1089.[61] Liu R, Liang S, He H, et al. Mapping incident photosyntheticallyactive radiation from MODIS data over China.Remote Sensing of Environment, 2008, 112(3): 998-1009.[62] Zheng T. Mapping Photosynthetically Active Radiation(PAR) Using Multiple Remote Sensing Data[D]. CollegePark, Maryland: University of Maryland, 2007.[63] Eck T, Dye D. Satellite estimation of incident photosyntheticallyactive radiation using ultraviolet reflectance.Remote Sensing of Environment, 1991, 38(2): 135-146.[64] Schiller K. Derivation of Photosynthetically Available Radiationfrom METEOSAT data in the German bight withneural nets. Ocean Dynamics, 2006, 56(2): 79-85[65] Wang D, Liang S, Liu R, et al. Estimation of daily-integratedPAR from sparse satellite observations: compari-son of temporal scaling methods. International Journal ofRemote Sensing, 2010, 31(6): 1661-1677.[66] Wanner W, Li X, Strahler A H. On the derivation of kernelsfor kernel-driven models of bidirectional reflectance.Journal of Geophysical Research, 1995, 100(10):21077-21089.[67] Jackson R D, Hatfield J L, Reginato R J, et al. Estimationof daily evapotran spiration from one time-of-day measurements.Agricultural Water Management, 1983, 7(1-3): 351-362.[68] 谢小萍. 基于MODIS数据估算区域光合有效辐射和光能利用率的方法研究[D]. 南京: 南京信息工程大学,2009.[69] Liang S, Zheng T, Liu R, et al. Estimation of incident photosyntheticallyactive radiation from Moderate ResolutionImaging Spectrometer data. Journal of GeophysicalResearch-Atmospheres, 2006, 111, D15208,doi:10.1029/2005JD006730.[70] 薛勇, 万伟, 艾建文, 等. 高性能地学计算进展. 世界科技研究与发展, 2008, 30(3): 314-319. |
[1] | 陈明星, 黄莘绒, 黄耿志, 杨燕珊. 新型城镇化与非正规就业:规模、格局及社会融合[J]. 地理科学进展, 2021, 40(1): 50-60. |
[2] | 史潇, 王国杰, 孙明, 李玉涛, 王博妮, 沈婕. 高分辨红外辐射探测器地表温度数据在江苏地区1980—2009年间适用性评估[J]. 地理科学进展, 2020, 39(8): 1283-1295. |
[3] | 付占辉, 梅林, 郑茹敏, 王彤彤. 东北地区城市女性就业水平空间分异机制[J]. 地理科学进展, 2020, 39(8): 1308-1318. |
[4] | 杜欣儒, 路紫, 李仁杰, 董雅晴, 高伟. 中国枢纽机场时间延误成本估算与航线影响分析及中美比较[J]. 地理科学进展, 2020, 39(7): 1160-1171. |
[5] | 程晗蓓, 邹游, 林赛南, 李志刚. 居住迁移对居民健康的影响研究进展述评[J]. 地理科学进展, 2020, 39(7): 1210-1223. |
[6] | 丁建军, 王璋, 柳艳红, 余方薇. 中国连片特困区经济韧性测度及影响因素分析[J]. 地理科学进展, 2020, 39(6): 924-937. |
[7] | 廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5): 709-715. |
[8] | 胡栩, 聂勇, 徐霞, 蒋盛, 张镱锂. 塔里木盆地南缘和田地区土地利用变化的遥感研究[J]. 地理科学进展, 2020, 39(4): 577-590. |
[9] | 史卓琳, 黄昌. 河流水情要素遥感研究进展[J]. 地理科学进展, 2020, 39(4): 670-684. |
[10] | 唐寅, 王中根, 王婉清, 黄火键, 袁勇. 适用于遥感影像的水生态空间多功能分类体系研究[J]. 地理科学进展, 2020, 39(3): 454-460. |
[11] | 胡小芳, 李小雅, 王天宇, 赵红敏, 杨铄, 邓磊, 李景旺. 民宿空间分布的集聚模式与影响因素研究——基于杭州、湖州、恩施的比较[J]. 地理科学进展, 2020, 39(10): 1698-1707. |
[12] | 姜凯斯,刘正佳,李裕瑞,王永生,王昱. 黄土丘陵沟壑区典型村域土地利用变化及对区域乡村转型发展的启示[J]. 地理科学进展, 2019, 38(9): 1305-1315. |
[13] | 杨奎,张宇,赵小风,文琦,钟太洋. 乡村土地利用结构效率时空特征及影响因素[J]. 地理科学进展, 2019, 38(9): 1393-1402. |
[14] | 陈秧分, 刘玉, 王国刚. 大都市乡村发展比较及其对乡村振兴战略的启示[J]. 地理科学进展, 2019, 38(9): 1403-1411. |
[15] | 段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8): 1182-1195. |
|