地理科学进展 ›› 2011, Vol. 30 ›› Issue (7): 930-937.doi: 10.11820/dlkxjz.2011.07.020
陈溪1, 王子彦1, 匡文慧2
收稿日期:
2011-01-01
修回日期:
2011-04-01
出版日期:
2011-07-25
发布日期:
2011-07-25
通讯作者:
匡文慧(1978-),男,助理研究员,主要从事LUCC与全球变化、城市遥感应用研究。E-mail: kuangwh@lreis.ac.cn
作者简介:
陈溪(1984-),男,博士研究生,主要从事城市环境管理研究。E-mail: chenxi840615@126.com
基金资助:
国家重点基础研究发展计划项目(2010CB95090100);国家高技术研究发展计划项目(2009AA122002-3)。
CHEN Xi1, WANG Ziyan1, KUANGWenhui2
Received:
2011-01-01
Revised:
2011-04-01
Online:
2011-07-25
Published:
2011-07-25
摘要: 本文利用知识可视化工具针对土地利用对气候变化影响研究进行文献共被引分析,整理得出土地利用和气候变化研究的主要知识聚类和研究热点,同时基于大气碳循环和土壤有机碳研究知识群进行施引文献分析并总结其研究主题,然后进一步归纳了气候变化背景下影响全球碳平衡的驱动因素及其对策。本研究可以详细分析基于土地利用对气候变化影响背景下不同知识群及其研究对象的特点,得出研究对象变化的驱动因素及对策,以期为科学研究提供基础。
陈溪, 王子彦, 匡文慧. 土地利用对气候变化影响研究进展与图谱分析[J]. 地理科学进展, 2011, 30(7): 930-937.
CHEN Xi, WANG Ziyan, KUANGWenhui. Research Progress and TUPU Analysis on the Impacts of Land Use on Climate Change[J]. PROGRESS IN GEOGRAPHY, 2011, 30(7): 930-937.
[1] Lambin E F, Baulies X, Bockstael N, et al. Land use and land cover change: Implementation strategy. IGBP Report No.48 and IHDP Report No.10, Stockholm: IGBP, 1999.[2] Feddema J J, Oleson K W, Bonan G B, et al. The importance of land-cover change in simulating future climates. Science, 2005, 310(5754): 1674-1678.[3] Zomer R J, Trabucco A, Bossio D A, et al. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment, 2008, 126 (1/2): 81-97.[4] Eggleston S, Buendia L, Miwa K, et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Agriculture, Forestry, and Other Land Use. Hayama: IPCC, 2006.[5] Foley J A, DeFries R, Asner J P, et al. Global consequences of land use. Science, 2005, 309(5734): 570-574.[6] Turner J L, Skole D L, Sanderson S, et al. Land-use and land-cover change science/research plan, IGBP Report No.35 and IHDP Report No.7, 1995.[7] Liu J Y, Deng X Z. Progress of the research methodologies on the temporal and spatial process of LUCC. Chinese Science Bulletin, 2010, 55(3):1-9.[8] Kuang W H. Simulating dynamic urban expansion at regional scale in Beijing- Tianjin-Tangshan Metropolitan Area. Journal of Geographical Sciences, 2011, 21(3): 317-330.[9] Chen C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.[10] Chen C M. Measuring the movement of a research paradigm. Proceedings of SPIEIS&T: Visualization and Data Analysis, 2005, 5669: 63-76.[11] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 1987, 51(5): 1173-1179.[12] Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809): 184-187.[13] Ramankutty N, Foley J A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles, 1999, 13(4): 997-1027.[14] Houghton R A, Hackler J L, Lawrence K T. The US carbon budget: contributions from land-use change. Science, 1999, 285(5427): 574-578.[15] Guo L B, Gifford R M. Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 2002, 8 (4):345-360.[16] Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 2000, 6(3): 317-327.[17] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627.[18] Cramer W, Bondeau A, Woodward F, et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 2001, 7: 357-373.[19] Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus, 2003, 55(2): 378-390.[20] Sala O E, Chapin F S. Global biodiversity scenarios for the year 2100. Science, 2000, 287(5459): 1770-1774.[21] Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change. Nature, 2004, 427(6970): 145-148.[22] Costanza R, Arge R, Groot R, et al. The value of the world's ecosystem services and natural capital. Nature, 387(6630): 253-260.[23] Parmesan C, Gary Y. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2002, 421: 37-42.[24] Pearson R G, Dawson T P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 2003, 12(5): 361-371.[25] Pounds J A, Fogden M P L, Campbell J H. Biological response to climate change on a tropical mountain. Nature, 1999, 398(6728): 611-615.[26] Elith J, Graham C H, Anderson R P, et al. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 2006, 29(2): 129-151.[27] Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858.[28] Mitchell T D, Philip D J. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 2005, 25(6): 693-712.[29] Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 2005, 8(9): 993-1009.[30] Guisan A, Zimmermann N E. Predictive habitat distribution models in ecology. Ecological Modelling, 2000, 135 (2-3): 147-186.[31] Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change. Nature, 2006, 416(6879): 389-395.[32] Arnell N W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environmental Change, 2004, 14(1): 31-52.[33] V?r?smarty C J, Green P, Salisbury J, et al. Global water resources: Vulnerability from climate change and population growth. Science, 2000, 289(5477): 284-288.[34] Vitousek P M, Mooney H A, Lubchenco J et al. Human Domination of Earth's Ecosystems. Science. 1997, 277 (5325): 494-499.[35] Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 1982, 55(1-4): 3-23.[36] Kalnay E, Cai M. Impact of urbanization and land-use change on climate. Nature, 2003, 423(6939): 528-531.[37] Pielke R A. Attribution of disaster losses. Science, 2005, 310(5754): 1615-1616. .[38] Pielke R A, Adegoke J, Beltran-Przekurat A, et al. An overview of regional land-use and land-cover impacts on rainfall.Tellus. 2007, 59(3): 587-601.[39] Milly P C D, Betancourt J, Falkenmark M, et al. Stationarity is dead: Whither water management? Science, 2008, 319(5863): 573-574.[40] Ewert F, Rounsevell M D A, Reginster I, et al. Future scenarios of European agricultural land use: I. Estimating changes in crop productivity. Agriculture, Ecosystems & Environment, 2005, 107(2-3): 101-116.[41] Parry M L, Rosenzweig C, Iglesias A, et al. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change, 2004, 14(1): 53-67.[42] Rounsevell M D A, Reginster I, Araújo M B, et al. A coherent set of future land use change scenarios for Europe, 2006, 114(1): 57-68.[43] Rounsevell M D A, Ewert F, Reginster I, et al. Future scenarios of European agricultural land use. II. Estimating changes in land-use and regional allocation. Agriculture ecosystems and environment, 2005, 107(2-3): 117-135.[44] Searchinger T, Heimlich R, Houghton R A, et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 2008, 319(5867): 1238-1240.[45] Fargione J, Hill J, Tilman D, et al. Land clearing and the biofuel carbon debt. Science, 2008, 319(5867): 1235-1238.[46] Farrell A E, Plevin R J, Turner B T, et al. Ethanol can contribute to energy and environmental goals. Science, 2006, 311(5760): 506-508.[47] Tilman D, Hill J, Lehman C, et al. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 2006, 314(5805): 1598-1600.[48] Friedlingstein P, Cox P, Betts R, et al. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate, 2006, 19(14): 3337-3353.[49] Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 2000, 404(6780): 858-861.[50] Christensen N S, Wood A W, Voisin N, et al. The Effects of Climate Change on the Hydrology and Water Resources of the Colorado River Basin. Climatic Change, 2004, 62(1-3): 337-363.[51] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I: A discussion of principles. Journal of Hydrology, 1970, 10(3): 282-290.[52] Friedl M A, Mclver D K, Hodges J C F, et al. Global land cover mapping from MODIS: Algorithms and early. Remote Sensing of Environment, 2002, 83(1-2): 287-302.[53] Pielke R A. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Reviews of Geophysics, 2001, 39(2): 151-177.[54] Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263 (5144): 185-190.[55] Goodale C L, Apps M J, Birdsey R A, et al. Forest carbon sinks in the northern hemisphere. Ecological Application, 2002, 12(3): 891-899.[56] Geist H G. Proximate causes and underlying driving forces of tropical deforestation. Bioscience, 2002, 52(2): 143-150.[57] Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386(6626): 698-702.[58] Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 2003, 9(2): 161-185.[59] Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234-240.[60] Achard F, Eva H D, Stibig H J, et al. Determination of deforestation rates of the world's humid tropical forests. Science, 2002, 297(5583): 999-1002.[61] Batjes N H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 1996, 47(2): 151-163.[62] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440: 165-173.[63] Janssens I A, Freibauer A, Ciais P, et al. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 2003, 300(5625): 1538-1542.[64] Freibauer A, Rounsevell M D A, Smith P, et al. Carbon sequestration in the agricultural soils of Europe. Geoderma, 2004, 122(1): 1-23. |
[1] | 杨清可, 段学军, 王磊, 王雅竹. 长三角地区城市土地利用与生态环境效应的交互作用机制研究[J]. 地理科学进展, 2021, 40(2): 220-231. |
[2] | 邓国富, 李明启. 树轮密度对气候的响应及重建研究进展[J]. 地理科学进展, 2021, 40(2): 343-356. |
[3] | 钱家乘, 张佰林, 刘虹吾, 高阳, 王昭颖, 连小云. 东部旅游特色山区乡村发展分化及其驱动力——以浙江省平阳县为例[J]. 地理科学进展, 2020, 39(9): 1460-1472. |
[4] | 敖雪, 翟晴飞, 崔妍, 周晓宇, 沈历都, 赵春雨, 宁喜龙. 基于EOF分解的辽宁省城市化气候效应检测[J]. 地理科学进展, 2020, 39(9): 1532-1543. |
[5] | 王成, 谢波. 土地利用视角下城市交通事故驱动机理的研究进展[J]. 地理科学进展, 2020, 39(9): 1597-1606. |
[6] | 葛玉娟, 赵宇鸾, 李秀彬. 山区耕地细碎化对土地利用集约度影响——以贵州省亚鱼村为例[J]. 地理科学进展, 2020, 39(7): 1095-1105. |
[7] | 程晗蓓, 邹游, 林赛南, 李志刚. 居住迁移对居民健康的影响研究进展述评[J]. 地理科学进展, 2020, 39(7): 1210-1223. |
[8] | 吴孔森, 芮旸, 陈佳, 张丽琼, 杨新军, 张佰刚. 旅游驱动下乡村转型发展的微尺度研究——以西安市上王村为例[J]. 地理科学进展, 2020, 39(6): 1047-1059. |
[9] | 胡甜, 吴健生, 彭建, 李卫锋. 土地分离与共享框架的研究现状及应用拓展[J]. 地理科学进展, 2020, 39(5): 880-888. |
[10] | 胡栩, 聂勇, 徐霞, 蒋盛, 张镱锂. 塔里木盆地南缘和田地区土地利用变化的遥感研究[J]. 地理科学进展, 2020, 39(4): 577-590. |
[11] | 刘采, 张海燕, 李迁. 1980—2018年海南岛人类活动强度时空变化特征及其驱动机制[J]. 地理科学进展, 2020, 39(4): 567-576. |
[12] | 周美君, 李飞, 邵佳琪, 杨海娟. 气候变化背景下中国玉米生产潜力变化特征[J]. 地理科学进展, 2020, 39(3): 443-453. |
[13] | 宋臻, 史兴民. 雨养农业区农户的气候变化适应行为及影响因素路径分析[J]. 地理科学进展, 2020, 39(3): 461-473. |
[14] | 邹利林, 刘彦随, 王永生. 中国土地利用冲突研究进展[J]. 地理科学进展, 2020, 39(2): 298-309. |
[15] | 谭荣辉, 刘耀林, 刘艳芳, 何青松. 城市增长边界研究进展——理论模型、划定方法与实效评价[J]. 地理科学进展, 2020, 39(2): 327-338. |
|