地理科学进展 ›› 2010, Vol. 29 ›› Issue (11): 1333-1339.doi: 10.11820/dlkxjz.2010.11.014
刘苏峡1, 刘昌明1, 赵卫民2
收稿日期:
2010-01-01
修回日期:
2010-07-01
出版日期:
2010-11-25
发布日期:
2010-11-25
作者简介:
刘苏峡(1965-)|女|湖北黄陂人|博士|副研究员|主要从事流域水文模拟预测、界面水文过程、土壤水分、生态需水量等方面的研究
基金资助:
国家自然科学基金项目(40971023,40671032,40830636);“973”国家重点基础研究发展计划项目(2009CB421307,2010CB428404);对欧盟科技合作专项经费项目(0911);中国科学院知识创新工程重要方向项目(KZCX2-YW-Q06-1-3,KZCX2-YW-433)
LIU Suxia1, LIU Changming1, ZHAO Weimin2
Received:
2010-01-01
Revised:
2010-07-01
Online:
2010-11-25
Published:
2010-11-25
摘要:
根据国内外研究成果,结合自身的科研体会,借用“巧妇面临无米之炊”时可能用到的“借、替和种米”的应对逻辑,将无测站流域水文预测(Predictions in Ungauged Basins, PUB)的研究方法归纳为移植法、替代法和生成法。将移植法归类为两种,一是当研究地区没有测站资料(简称无资料)而周边某个地区有测站资料(简称有资料)时,如果有资料区的自然地理环境与研究地区相似,直接移用该有资料地区的资料到无资料区,即直接移植法;二是倘若周边不只一个区域有资料,那么就借用所有这些点的信息,采用插值法得到无资料区的资料,即间接移植法。定义替代法为如果本研究区域或者相似区域没有资料,但有可能“求出”资料的辅助信息,则挖掘这些信息的方法。将替代法分为两类,一是根据本研究区域其他信息,通过模型模拟、同化、融合、从本学科和多学科领域挖掘信息等技术,得到本研究区所需资料。二是根据其它研究区域其他信息得到本研究区所需资料,包括就地外延和对比流域法。定义生成法为通过获取第一手资料开展水文预测的方法,包括野外实验和室内实验。通过梳理PUB的这些研究途径,探索了PUB方法发展的可能突破口,旨为推动PUB的研究提供思路。
刘苏峡, 刘昌明, 赵卫民. 无测站流域水文预测(PUB)的研究方法[J]. 地理科学进展, 2010, 29(11): 1333-1339.
LIU Suxia, LIU Changming, ZHAO Weimin. Towards the Methodology for Predictions in Ungauged Basins[J]. PROGRESS IN GEOGRAPHY, 2010, 29(11): 1333-1339.
[1] Sivapalan M, Takeuchi K, Franks S W, et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003 - 2012: Shaping an Exciting Future for the Hydrological Sciences. Hydrological Sciences Journal, 2003, 48(6): 857-880. [2] 刘苏峡, 夏军, 莫兴国. 无资料流域水文预报(PUB 计 划)研究进展. 水利水电技术, 2005, 36(2): 9-12. [3] Yang D W, Tian F Q, Tang L H, et al. Hydrological research in China: Process studies, modelling approaches and applications. Proceedings of IAHS-PUB meeting held at Beijing (China), October 2006, IAHS Publ. 322 (2008) ISBN 978-1-901502-64-0, 262+x pp [4] Xu W L, Ao T Q, Zhang X H.. Hydrological Modelling and Integrated Water Resources Management in Ungauged Mountainous Watersheds. Proceedings of IAHS-PUB meeting held at Chengdu (China), November 2008. IAHS Publ.335, 2009, ISBN978-1-907161-07-0, 310+x pp. [5] 庄一鸰, 林三益. 水文预报. 北京: 水利电力出版社, 1981. [6] 刘昌明. 自然地理界面过程及水文界面分析. 中国科学 院地理研究所编, 自然地理综合研究: 黄秉维学术思想 探讨, 北京: 气象出版社, 1993: 19-28. [7] 刘苏峡. 世纪之交的水文研究. 水科学进展, 2001, 12 (1): 113-117. [8] Liu S, Liu C, Xia J. Environmental flow in China. GWSP Newsletter, 2008, 7: 9-11. [9] 杨家坦. 无资料地区小流域设计径流若干技术问题. 福 建水土保持, 1999, 11(1): 39-44. [10] 林忠辉, 莫兴国, 李宏轩, 等. 中国陆地区域气象要素的 空间插值, 地理学报, 2002, 57(1): 047-056. [11] Micovic Z, Quick M C. A rainfall and snowmelt runoffmodelling approach to flow estimation at ungauged sites in British Columbia. Journal of Hydrology, 1999, 226 (122): 101-120. [12] 郭敬辉, 汤奇成. 关于中国河川径流动态类型及其分区 的初步研究. 地理集刊, 1980(12). [13] 刘昌明. 中国水量平衡与水资源储量的分析//中国地理 学会第三次全国水文学术会议论文集. 北京: 科学出版 社, 1986. [14] 刘昌明, 曾燕, 邱新法. 黄河流域气象水文学要素图集. 郑州: 黄河水利出版社, 2004. [15] 刘昌明, 王中根, 郑红星, 等. HIMS 系统及其定制模型 的开发与应用. 中国科学: E 辑, 2008, 38(3): 350-360. [16] Mo X, Liu S, Lin Z, et al. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agriculture, Ecosystems and Environment, 2009, 134(1-2): 67-78. [17] Liu S, Mo X, Zhao W, et al. Temporal variation of soil moisture over the Wuding River Basin assessed with an eco-hydrological model, in-situ observations and remote sensing. Hydrology and Earth System Sciences, 2009, 13: 1375-1398. [18] Liu S, Liu C, Xia J, et al. Environmental flow in China. GWSP Newsletter, 2008, 7: 9-11. [19] Jarvie H P, Neal C, Williams R J, et al. Phosphorus sources, speciation and dynamics in the lowland eutrophic River Kennet, UK. The Science of The Total Environment, 2002, 282-283: 175-203. [20] Schreider S Y, Jakeman A J, Gallant J, et al. Prediction of monthly discharge in ungauged catchments under agricultural land use in the Upper Ping basin, Northern Thailand. Mathematics and Computers in Simulation, 2002,59 (1-3): 19-33. [21] Langford K J. Change in field of water following a bushfi re in a forest of eucalyptus regnans. Journal of Hydrology, 1976, 29(1-2): 87-114. [22] Helvey J D. Effects of a north-central Washington wildfi re on runoff and sediment production. Water Res Bull, 1980, 16(4): 627-634. [23] Homes J W, Wronski E B. On the water harvest from afforested catchments. 1st National Symp. on Forest Hydrology. National Conference Publication, Institute of Engineers, Australia, 1982: 1-6. [24] Kuczera G. Prediction of water yield reductions following a bush fire in ash-mixed species eucalyptus forest. Journal of Hydrology, 1987, 94(3-4): 215-236. [25] Cornish P M, Vertessy R A. Forest age-induced changes in evapotranspiration and water yield in a eucalyptus forest. Journal of Hydrology, 2001, 242(1-2): 43-63. [26] Loaiciga H A, Pedreros D, Roberts D. Wild fire-stream fl ow interactions in a chaparral watershed. Advances in Environmental Research, 2001, 5(3): 295-305. [27] Roberts S, Vertessy R, Grayson R. Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. Forest Ecology and Management, 2001, 143(1-3):153-161. [28] Townsend S A, Douglas M M.. The effect of three fire regimes on stream water quality, water yield and export coefficients in a tropical savanna (Northern Australia). Journal of Hydrology, 2000, 229(3-4): 118-137. [29] Watson F, Vertessy R, McMahon T, et al. Improved methods to assess water yield changes from paired-catchment studies: application to the Marinade catchments. Forest Ecology and Management, 2001, 143: 189-204. [30] Liu S, Leslie L M, Speer M, et al. The effects of bushfires on hydrological processes using a paired-catchment analysis. Meteorology and Atmospheric Physics, 2004, 86 (1-2): 31-44. [31] Brown A E, Zhang L, McMahon T A, et al. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 2005, 310(1-4): 28-61. [32] Larssen T, Holme J. Afforestation, seasalt episodes and acidification: A paired catchment study in western Norway. Environmental Pollution, 2006, 139(3): 440-450. [33] 刘昌明. 关于比较水文学的研究. 地理学报, 1987, 42 (2): 181-184. [34] Woo M K, Liu C M. Mountain hydrology of Canada and China: A case study in comparative hydrology. Hydrological Processes, 1994, 8(6): 573-587. [35] McDonnell J J, Woods R. Editorial: On the need for catchment classification. Journal of Hydrology, 2004, 299 (1-2): 2-3. [36] Bl?schl G, Merz R. Thoughts on a process-based catchment classification. Geophysical Research Abstracts, 2008, 10, EGU. 2008-A-08153. [37] 小流域暴雨径流研究组(刘昌明等执笔). 小流域暴雨洪 峰流量计算. 北京: 科学出版社, 1978. [38] Liu C M, Wang G T. The estimation of small-watershed peak flows, China. Water Resources Research, 1980, 16 (5): 881-886. |
[1] | 赵雪赏, 阿吉古丽·沙依提, 买买提艾力·买买提依明, 刘永强, 王豫, 高佳程, 杨帆, 霍文, 周成龙. 卫星反演太阳紫外辐射数据产品在东疆黑戈壁区域的适用性验证[J]. 地理科学进展, 2021, 40(2): 304-313. |
[2] | 严正宵, 夏军, 宋进喜, 赵玲玲, 庞国伟. 中小流域设计暴雨雨型研究进展[J]. 地理科学进展, 2020, 39(7): 1224-1235. |
[3] | 张永勇, 陈秋潭. 淮河中上游流域洪水主要类型及其时空分布特征[J]. 地理科学进展, 2020, 39(4): 627-635. |
[4] | 胡庆芳, 曹士圯, 杨辉斌, 王银堂, 李伶杰, 王立辉. 汉江流域安康站日径流预测的LSTM模型初步研究[J]. 地理科学进展, 2020, 39(4): 636-642. |
[5] | 闫东升, 孙伟, 王玥, 徐诗瑶. 长江三角洲人口分布演变、偏移增长及影响因素[J]. 地理科学进展, 2020, 39(12): 2068-2082. |
[6] | 王晓楠, 孙威. 黄河流域资源型城市转型效率及其影响因素[J]. 地理科学进展, 2020, 39(10): 1643-1655. |
[7] | 周晓艳, 侯美玲, 李霄雯. 独角兽企业内部联系视角下中国城市创新网络空间结构研究[J]. 地理科学进展, 2020, 39(10): 1667-1676. |
[8] | 姜凯斯,刘正佳,李裕瑞,王永生,王昱. 黄土丘陵沟壑区典型村域土地利用变化及对区域乡村转型发展的启示[J]. 地理科学进展, 2019, 38(9): 1305-1315. |
[9] | 赖锡军. 流域水环境过程综合模拟研究进展[J]. 地理科学进展, 2019, 38(8): 1123-1135. |
[10] | 吴威,梁双波,曹有挥. 流域交通运输地理研究进展与展望[J]. 地理科学进展, 2019, 38(8): 1136-1149. |
[11] | 高俊峰,高永年,张志明. 湖泊型流域水生态功能分区的理论与应用[J]. 地理科学进展, 2019, 38(8): 1159-1170. |
[12] | 徐力刚,赖锡军,万荣荣,王晓龙,李相虎. 湿地水文过程与植被响应研究进展与案例分析[J]. 地理科学进展, 2019, 38(8): 1171-1181. |
[13] | 段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8): 1182-1195. |
[14] | 段学军,邹辉,陈维肖,王雅竹,叶磊. 长江经济带形成演变的地理基础[J]. 地理科学进展, 2019, 38(8): 1217-1226. |
[15] | 余向洋,张圆刚,朱国兴,李德明,王娟. 基于熵测度方法的旅游季节性研究[J]. 地理科学进展, 2019, 38(8): 1240-1247. |
|