地理科学进展 ›› 2006, Vol. 25 ›› Issue (6): 87-93.doi: 10.11820/dlkxjz.2006.06.010

• 土地利用与模型应用 • 上一篇    下一篇

平缓地区地形湿度指数的计算方法

秦承志1, 杨琳1, 朱阿兴1,2, 李宝林1, 裴韬1, 周成虎1   

  1. 1. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室, 北京100101|
    2. Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA
  • 收稿日期:2006-06-01 修回日期:2006-09-01 出版日期:2006-11-25 发布日期:2006-11-25
  • 作者简介:秦承志( 1977- )| 男, 山东蒙阴人, 博士, 副研究员, 主要从事数字地形分析研究. E- mail: qincz@lreis.ac.cn
  • 基金资助:

    国家自然科学基金资助项目( 40501056) ; 中国科学院"百人计划"项目; 中国科学院创新团队国际 合作伙伴计划"人类活动与生态系统变化"(CXTD- Z2005- 1) .

Computation Method of Topogr aphic Wetness Index in Low Relief Ar ea

QIN Chengzhi1, YANG Lin1, ZHU A- Xing1,2, LI Baolin1, PEI Tao1, ZHOU Chenghu1   

  1. 1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, CAS, Beijing 100101, China|
    2. Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA
  • Received:2006-06-01 Revised:2006-09-01 Online:2006-11-25 Published:2006-11-25

摘要:

地形湿度指数( topographic wetness index) 可定量模拟流域内土壤水分的干湿状况, 在流域 的土壤及分布式水文模型等研究中具有重要的意义。但现有的地形湿度指数计算方法在应用于 地形平缓地区时会得到明显不合理的结果, 即在河谷地区内, 地形湿度指数仅在狭窄的汇水线上 数值较高, 而在汇水线以外的位置则阶跃式地变为异常低的地形湿度指数值。本文针对此问题对 地形湿度指数的计算方法提出改进: 以多流向算法MFD- fg 计算汇水面积, 相应地以最大下坡计 算地形湿度指数, 再基于一个正态分布函数对河谷平原地区内的地形湿度指数进行插值处理。应 用结果表明, 所得地形湿度指数的空间分布不但能合理地反映平缓地区坡面上的水分分布状况, 并且在河谷地区内地形湿度指数值也都比较高, 其空间分布呈平滑过渡, 因而整个研究区域的水 分分布状况得到了比较合理的反映。

关键词: DEM, 插值, 地形湿度指数, 多流向算法, 平缓地区, 最大下坡

Abstract:

Topographic wetness index, which is designed for modeling the status ( “dry”or “wet”) of the soil moisture quantitatively, is an important index for both predictive soil mapping and distributed hydrological modeling in a catchment. Current methods for calculating topographic wetness index have evident problems when applied in low relief area. Outside the positions of narrow accumulation line with high topographic wetness index, the topographic wetness index dramatically jumps down in other parts of wide valley area. This is unreasonable because the soil moisture should be comparatively average and high in the wide and flat valley, and the value of topographic wetness index should be high. This problem is caused by both the flow accumulation algorithm and the slope gradient used during computing the topographic wetness index. A new method for computing topographic wetness index is proposed in this paper to address this problem. Firstly, flow accumulation is calculated by a multiple flow direction algorithm (MFD- fg). Topographic wetness index is then computed by the flow accumulation and maximum downslope. The maximum downslope used in the computation of topographic wetness index is matched with the idea of both MFD- fg and topographic wetness index. Furthermore, a post - processing method is also proposed to compute the topographic wetness index in valley area. The topographic wetness index in the valley area is interpolated by a Gaussian function based on the value of the topographic wetness index on the nearest position on extracted flow accumulation line. The application in a small watershed shows that the method proposed in this paper can get a comparatively reasonable distribution of topographic wetness index for not only the hillslope but also the wide valley area. The value of topographic wetness index in valley area is averagely high and with a smooth transition, which reflects the natural status of the soil moisture in application area. In the future research, the method proposed in this paper will be evaluated by both artificial surfaces and the real applications.

Key words: digital elevation model (DEM), interpolation, low relief area, maximum downslope, multiple flow direction algorithm, topographic wetness index

中图分类号: 

  • P343