地理科学进展  2016 , 35 (5): 554-568 https://doi.org/10.18306/dlkxjz.2016.05.003

研究综述

区域二元碳收支的理论方法研究进展

赵荣钦1, 刘英2, 丁明磊1, 张战平1, 黄贤金3, 秦耀辰4

1. 华北水利水电大学资源与环境学院,郑州 450045
2. 郑州航空工业管理学院土木建筑工程学院,郑州 450046
3. 南京大学地理与海洋科学学院,南京 210093
4. 河南大学环境与规划学院,河南 开封 475001

Theory, methods, and research progresses of regional carbon budget

ZHAO Rongqin1, LIU Ying2, DING Minglei1, ZHANG Zhanping1, HUANG Xianjin3, QIN Yaochen4

1. School of Resources and Environment, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2. College of Civil Construction Engineering, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450046, China
3. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
4. College of Environment and Planning, Henan University, Kaifeng 475001, Henan, China

接受日期:  2015-12-27

网络出版日期:  2016-05-27

版权声明:  2016 地理科学进展 《地理科学进展》杂志 版权所有

基金资助:  国家自然科学基金项目(41301633)河南省教育厅人文社会科学研究项目(2015-GH-088)National Natural Science Foundation of China, No.41301633Humanity and Social Science Project of the Education Department of Henan Province, No.2015-GH-088

作者简介:

作者简介:赵荣钦(1978-),男,河南孟津人,博士,副教授,主要从事土地利用与碳循环研究,E-mail: zhaorq234@163.com

展开

摘要

在全球变化和低碳发展的背景下,区域“自然-社会”二元碳收支成为地理学、环境科学、生态学、经济学及管理学等多学科交叉的研究热点。区域二元碳收支不仅为气候变化背景下“自然-社会”耦合的碳循环压力评估提供了理论基础,而且对推动区域低碳发展和协同减排也具有重要的实践价值。本文从区域系统的角度,提出了区域“自然-社会”二元碳收支的内涵、特征和理论框架;探讨了区域人类活动对二元碳收支的影响机制,阐述了区域不同空间尺度碳收支之间的内在关系;从碳排放、碳吸收、碳流通及碳平衡等角度对当前区域碳收支研究的主要方法特点和应用领域进行了总结和对比;从全球、国家、省级、城市、城区、县域及社区、典型产业及人类活动等不同尺度对近年来区域二元碳收支的国内外研究进行了总结和评述;最后提出了区域碳收支综合研究的重点方向:区域二元碳收支的集成模拟研究,区域碳收支的空间分异规律研究,基于区域碳收支核算的区域横向碳补偿研究,区域碳收支与区域资源环境效应的关系和区域碳收支的综合调控研究。

关键词: 碳吸收 ; 碳排放 ; 碳收支 ; 区域 ; 研究进展

Abstract

Under the background of global change and low-carbon development, regional natural-social system carbon budget became a hot multi-disciplinary research field in geographical, ecological, environmental, economic, and management sciences. Regional natural-social system carbon budget studies will not only offer important methods for evaluating the impact of human activities on the environment and provide theoretical basis for carbon cycle pressure assessment of the coupled natural-social system, but also has great significance for regional low-carbon development and collaborative emission reduction. Based on a regional system perspective, this article first defined regional natural-social system carbon budget, analyzed its characteristics, and presented a conceptual model of the system. Then the impacting mechanism of regional anthropogenic activities on the dualistic carbon budget of the natural-social system was discussed, and the relationship between regional natural-social system carbon budget studies at different spatial levels was analyzed. The research progress of regional natural-social system carbon budget at different spatial levels including the global, national, provincial, city, urban district and county, neighborhood, and typical industrial sector and human activity levels was summarized. Finally, the trends of regional natural-social system carbon budget research were put forward: integrated modeling and spatial differentiation of regional carbon budget, inter-regional carbon compensation, the relationship between regional carbon budget and resources and environment effects, and the comprehensive regulation and control of regional natural-social system carbon budget.

Keywords: carbon absorption ; carbon emission ; carbon budget ; region ; research progress

0

PDF (3011KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

赵荣钦, 刘英, 丁明磊, 张战平, 黄贤金, 秦耀辰. 区域二元碳收支的理论方法研究进展[J]. , 2016, 35(5): 554-568 https://doi.org/10.18306/dlkxjz.2016.05.003

ZHAO Rongqin, LIU Ying, DING Minglei, ZHANG Zhanping, HUANG Xianjin, QIN Yaochen. Theory, methods, and research progresses of regional carbon budget[J]. 地理科学进展, 2016, 35(5): 554-568 https://doi.org/10.18306/dlkxjz.2016.05.003

1 引言

在全球变化和低碳发展的背景下,区域碳循环和碳收支成为地理学、环境科学、生态学及经济学等多学科交叉的研究热点。近年来,区域碳收支研究的重要特征之一是突破了以往单一关注自然生态系统的局限,而将研究视角扩大到区域社会经济活动领域,逐渐开展了区域“自然-社会”二元碳收支的研究。例如:结合人类能源活动(Liu et al, 2015)、土地利用(Houghton et al, 2012)、产业发展(Zhao et al, 2011)及城市化过程(Zhang C, Tian H Q, Chen G S et al, 2012)而开展的区域碳收支(Marchi et al, 2012)、碳平衡(Houghton, 2007)及碳流通(Chen et al, 2012; Zhao R Q, Huang X J, Zhong T Y et al, 2014)等的研究逐渐增多。通过二元碳收支研究,不仅从整体上了解区域人类活动的碳排放强度、格局和过程,而且可以揭示区域碳吸收状况和生态系统的承载能力,因此,区域二元碳收支为气候变化背景下“自然-社会”耦合的碳循环压力评估提供了新的理论视角。其实质是通过碳源/汇的对比分析,了解区域碳平衡状况及碳循环的效率和压力,为区域低碳、公平和协调发展提供决策依据。但总体而言,当前国内外对于区域“自然-社会”二元碳收支理论框架和方法的研究还较为欠缺,因此,亟需建立不同尺度的区域碳收支核算的理论框架及方法体系,为区域温室气体核算和低碳发展策略的制定提供有力的数据支撑和基础信息库。

从区域低碳发展和协同减排的角度而言,一方面,区域二元碳收支研究切合了当前应对气候变化的科学要求,为不同区域开发强度的定量评估提供了重要手段,这对建立在差别化评价基础上的区域公平发展策略的制定具有重要的实践指导;另一方面,国际或地区贸易中存在着“碳泄露”问题,以往的碳排放大多是基于“生产者”角度进行核算(佘群芝等, 2014),而基于“生产者”和“消费者”共同责任的碳排放核算,更有利于划分区域之间的碳排放责任。区域二元碳收支研究通过对“自然”和“社会”不同途径的碳收支核算,为碳排放责任的划分和“碳泄露”的识别提供了重要依据。近年来,中国区域发展不均衡的现象日益突出,区域二元碳收支核算有助于揭示不同区域的碳平衡状况,划分“碳泄露”的地区责任,为区域横向碳交易提供重要的数据支撑,这也成为未来建立全国统一的碳交易市场的重要依据,有助于推动区域协调发展。因此,区域碳收支不仅是制定应对气候变化的碳减排策略的基础,也是地方政府开展应对气候变化的减缓和适应能力建设的重要依托。

总体而言,区域二元碳收支不仅具有学科集成的优势和理论价值,而且被赋予了特殊的政治内涵。开展区域二元碳收支研究不仅有助于推动区域碳循环理论体系的进一步完善,而且对于区域温室气体清单核算、碳管理策略的制定、碳排放责任的划分、区域低碳公平发展及协同减排也具有重要的实践价值。区域二元碳收支研究也将成为跨越自然和社会学科的区域发展评估的重要工具之一。

2 区域“自然-社会”二元碳收支的特征、理论框架和空间尺度分析

2.1 内涵和特征

区域“自然-社会”二元碳收支(以下简称“二元碳收支”)是指特定时段内(一般为一年)一定区域范围的所有自然和人为活动所导致的碳收入(碳吸收或输入)和支出(碳排放或输出)的对比关系和平衡状况。其主要特征为:

(1) 区域二元碳收支包括不同的方式和过程。既包括自然过程的碳吸收和排放,也包括人为过程的碳输入和输出,既有垂直过程也有水平过程;

(2) 区域碳收支的强度和规模受制于人类经济社会活动方式。不同的人类活动方式下的自然过程和人为活动的碳收支强度具有较大差异(表1);

(3) 区域碳收支具有较大的空间异质性。区域收支的强度、范围和速率取决于区域社会发展模式和水平、区域城镇体系、土地利用强度、产业类型、经济结构、能源结构以及能源使用效率等社会因素;

(4) 区域碳收支不同环节的生命周期不同。比如,能源、食物、木材等含碳物质输入到系统之后的消费周期不同,其再次形成CO2被释放的时间尺度也不同。因此在区域碳管减排策略的制定中,对不同途径的碳收支应采用不同的策略并各有侧重;

(5) 区域系统的结构、功能和格局对区域碳收支具有重要影响。区域是一个高度开放的系统,与外界有着巨大的碳交换,其碳循环过程涉及到区域之外的广大空间。一般而言,经济越发达的区域,其碳收支的影响“腹地”就越大,其影响的空间范围主要取决于区域资源需求量、能源消费量、碳代谢通量和交通运输方式等。

表1   主要人类活动方式碳收支强度的对比

Tab.1   Carbon budget of main anthropogenic activities

人类活动方式碳收入强度碳支出强度
自然
过程
人为
活动
自然
过程
人为
活动
产业
活动
第一产业
第二产业
第三产业
土地
利用
人类耕作活动
土地开发、占用与建设
土地修复和整治
生态保护与植树造林
生产
过程
资源能源开采
能源利用与消费
废弃物排放

新窗口打开

2.2 理论框架

碳是连接自然和人类社会的关键元素之一,碳元素及其化合物与生物生命活动、人类生产活动密切相关。区域二元碳收支研究不仅要分别了解自然和社会过程中碳收支状况,更要分析自然和社会系统之间的碳流通过程及机制。随着人类活动强度的不断增强,区域人类活动对自然碳收支过程的影响也不断加深。人类活动对区域碳收支的影响,一方面表现在改变了区域内外的碳流通的方式、方向和规模,使原本自然过程的碳及其化合物以各种形式参与到人类社会经济活动中;另一方面,通过人类消耗(特别是化石能源消费)造成了大量的碳转移、碳排放和碳废弃,对自然碳循环过程造成了严重的干扰(图1)(赵荣钦, 黄贤金, 2013)。因此,探索人类活动对碳收支的影响,并评估其对自然碳循环过程的压力成为区域二元碳收支研究的核心。

图1   区域二元碳收支的理论框架(赵荣钦, 黄贤金, 2013)

Fig.1   Regional natural-social system carbon budget (Zhao R Q, Huang X J, 2013)

总体而言,区域碳收支可分为3个不同的环节:即垂直碳收支、水平碳收支和内部碳流通(赵荣钦等, 2014)。其中,垂直碳收支是指区域生态系统光合作用的碳吸收和区域各种途径的自然和人为碳释放;水平碳收支是指区域与外界之间各种能源、含碳产品、原料和废弃物等的输入和输出;内部碳流通是指区域内部子系统之间的碳元素以各种能源、产品、食物、原料及废弃物等形式的流通(图1)。而水平碳收支和垂直碳收支的主要区别在于:一方面碳流通方向的不同;另一方面碳流通的形式和载体也有所差别,水平碳收支主要以碳水化合物形式进行流通,而垂直碳收支主要以CO2的形式进行流通(图2)。

图2   区域碳收支过程概念框架(Christen et al, 2010)

Fig.2   Conceptual model of regional carbon budget (Christen et al, 2010)

2.3 区域人类活动对二元碳收支的影响机制

人类活动的不同方式和强度在很大程度上决定了区域碳收支的格局和强度。就区域系统而言,人类活动主要包括产业活动、土地利用、资源开发与利用及废弃物排放等过程,这几种人类活动方式对碳收支的影响差异较大(图3):①产业活动是重要的碳排放源。一方面从区域内外获得大量的原材料、能源和资源用于生产过程的消耗,另一方面也将大量的产品和电力输送到人类生活系统中,同时产生了大量的碳排放;②土地利用通过直接或间接作用对区域碳收支造成影响。一方面通过人类的耕作、采伐、土地平整等活动影响自然生态系统的碳收支,另一方面也通过土地建设和占用带来额外的人类活动的能源消耗和碳排放。与此同时,也将土地产品输送到区域内外供消费使用;③资源开发与利用过程将自然界的能源、水资源和各种矿产资料以原材料和生物必需品的形式输送到区域产业系统和人类生活系统中,同时带来了大量的废弃物排放;④废弃物排放系统可以看作是区域内部容纳各种废弃碳原料、食物废弃物等的场所。通过生产活动、资源开发与人类生活消费把大量废弃物输出到系统自然界中(部分输出到系统之外),同时一部分作为生物肥料和发电原料的形式重新进入区域碳循环中。因此,应该从人类活动入手分析区域碳收支的影响机制,并甄别区域碳收支过程的关键环节,以采取恰当的区域碳管理策略,这也是区域碳收支研究的关键内容之一。

图3   不同人类活动方式对区域碳收支的影响机制

Fig.3   Influencing mechanism of anthropogenic activities on regional carbon budget

2.4 区域二元碳收支的空间尺度及其相互关系

从不同尺度开展区域二元碳收支研究的侧重点和研究视角应有所不同。碳收支可从微观到宏观的不同角度开展(图4):①微观层面的碳收支主要以某种“产品生产过程”和“人类活动方式”为研究对象。对产品的碳收支研究重点探索产品生产全生命周期过程中的碳足迹,从而在产品微观角度评估生产过程对环境的影响程度;对某种人类活动的碳收支进行研究的目的是揭示各种人类活动(如产业活动、土地利用、资源开发等)的碳排放效应,分析人类活动对自然生态系统碳收支的影响,并根据碳平衡结果综合评估人类某种活动的环境影响。②中观层面主要是针对县域、城市或省级层面的研究。重在通过不同尺度碳收支核算,探索碳收支格局和过程,以寻求区域碳管理对策和低碳发展模式。主要包括:a) 区域碳收支清单核算。即建立区域层面的碳吸收/排放清单;b) 区域碳补偿机制研究。即从空间角度探讨区域横向碳补偿的策略;c) 区域碳收支格局分析。即区域碳收支强度分析与碳平衡分区研究;d) 区域碳足迹研究。即区域碳吸收对碳排放的补偿效果;e) 区域低碳发展模式。③宏观层面主要是开展国家和全球层面的碳收支与碳平衡研究。基于国际碳减排的国际谈判的政治和科技需求,通过开展国别碳收支研究,以寻求应对气候变化的国家发展战略,并寻求减排、减缓和适应对策。

图4   不同尺度区域碳收支研究的内在关系

Fig.4   Relationship between regional carbon budget studies at different spatial scales

以上3个层次的研究从微观到宏观依次侧重于“碳收支机理”“碳收支格局与过程”“碳减排策略”等不同的方面。最终目标为能建立跨越不同空间尺度的碳收支核算模型,并通过碳收支机理和过程的研究,寻求在区域层面可操作性的碳管理模式和碳减排策略。

3 区域二元碳收支的研究方法体系

区域二元碳收支涉及碳排放、碳吸收、碳流通及碳平衡分析等方面,本文对主要方法进行总结和归纳,并对其应用范围和特点进行对比分析(表2)。

表2   区域碳收支研究方法对比

Tab.2   Methods for regional carbon budget study

类别方法适用范围特点文献
碳排放
研究方法
温室气体清单法社会生产的各部门计算简便、实用IPCC, 2006
实测法企业排放、能源活动精确、测量要求高郝千婷等, 2011
排放监测法自然生态系统、土壤系统或水体原位观测、精确,成本较高(如涡度相关法和箱法)Baldocchi, 2003; Frank et al, 2002
物料衡算法工业生产过程需有完备基础数据记录、结果可靠秦耀辰, 2013
生命周期分析法产品生产、企业活动等微观层面计算详尽、完整,关注生产链能源消耗的碳排放(包括直接和间接排放)郝千婷等, 2011
碳吸收
研究方法
样地清查法陆地自然植被碳蓄积核心是研究植被、枯落物或土壤等的碳储量,适用于小尺度的研究方精云等, 2007
产量估算法农田生态系统碳蓄积利用作物产量的统计数据和碳吸收率进行估算,方法简便,较为准确方精云等, 2007
模型模拟法植被的碳蓄积和净生产力微观和宏观相结合的研究朱文泉等, 2007
遥感估测方法森林和草地的碳蓄积大尺度但具有一定的误差张璐等, 2015
碳流通
研究方法
投入产出分析国民经济不同部门的碳流通与转移投入产出表的空间尺度局限于国家和省域尺度,无法应用到小尺度空间范围Zhang M Y, Huang X J, 2012; 唐志鹏等, 2014
隐含碳分析区域、城乡或产业之间的隐含碳流通主要用于区域贸易、产品生产、商品服务等的隐含碳排放研究,不适用直接碳排放研究石敏俊等, 2012; Zhao R Q, Huang X J, Zhong T Y et al, 2014
生态系统分室模型区域(自然或社会)子系统之间的碳流通将区域系统模块化,但容易忽略部分碳流的核算戈峰, 2007
系统动力学经济社会系统内部的碳流通常用于对能源经济系统碳排放的动态模拟仿真,系统复杂,不确定揣小伟, 2013
物质代谢分析区域社会经济系统与外界的碳流通和交换从物质流平衡的角度从固态物质层面分析区域的碳流通黄贤金等, 2009
碳平衡
分析方法
碳平衡指标方法区域碳平衡状况的单一要素评价计算简便、直观,易于区域之间的对比分析叶笃正等, 1992; 赵荣钦, 2012
碳氧平衡分析法区域整体碳平衡状况评价从气体循环的角度开展,没有考虑系统内含碳固态物质的输入、输出、转化、废弃等环节马巾英等, 2011

新窗口打开

3.1 区域碳排放核算方法

国内外区域碳排放核算方法主要有实测法、温室气体清单法、碳排放监测方法、物料衡算法和生命周期分析等。这几种碳排放核算方法具有各自的适用领域和特点。实测法主要用于企业碳排放监测和能源活动碳排放的核算;排放监测法主要用于对自然生态系统碳排放的监测和核算;物料衡算法主要用于工业生产过程;生命周期分析主要适用于对企业产品生产、人类某项活动(如建设活动或土地利用)的碳排放的核算;温室气体清单法适用面较广,可应用于社会生产各部门。目前,碳排放核算多采用温室气体清单和生命周期分析方法,前者主要应用于宏观、中观尺度(如国家、省或地市),后者主要应用于微观层面(如产品或某项活动)。

3.2 区域碳吸收核算方法

区域碳吸收核算方法主要有清查法、产量估算法、模型模拟法和遥感估测方法等。清查法主要用于植被碳储量的计算;产量估算法主要用于农作物碳吸收的核算;模型模拟法多用于对植被和土壤碳储量的模拟;遥感估测方法则主要用于对大面积植被(特别是草地)的碳储量的估算。需要说明的是,目前对城市植被的研究较少,国内部分学者借鉴清查法(王祖华等, 2011)和生物量法(管东生等, 1998)对城市绿化植被的碳储量进行了研究,其他不少学者则仅仅是采用相关研究结果的参数进行城市植被碳储量的估算。由于城市植被又分为城市树木和草地,其生物量及固碳能力具有较大差异,因此,对城市植被的碳吸收的研究还需要进一步加强。

3.3 区域碳流通研究方法

区域碳流通研究方法主要有投入产出分析、隐含碳分析、生态系统分室模型、系统动力学和物质代谢分析等。其中,投入产出分析主要适用于宏观尺度(国家或省级层面)贸易或不同产业部门的碳转移;隐含碳分析主要用于对区域贸易、产品生产及商品服务等隐含碳排放的研究;生态系统分室模型是借鉴生态学的理论,基于社会生产不同部门开展碳流通研究,重点是突出碳代谢与周转效率的研究;物质代谢分析主要是基于区域物质流平衡的角度来开展含碳物质的输入和输出分析,与物料衡算法较为接近;而系统动力学则重点模拟能源经济系统内的碳排放动态。目前,区域碳流通研究主要集中在城市或省级层面,其中投入产出分析是最常用的方法。

3.4 区域碳平衡研究方法

区域碳平衡研究主要有两种:一是碳平衡指标法。比如采用区域碳补偿率、碳足迹(赵荣钦, 2012)、碳流通率和碳周转率(叶笃正等, 1992)等指标分析区域的碳收支平衡状况;二是区域碳氧平衡理论(马巾英等, 2011)。通过综合分析区域自然和社会经济系统的各种耗氧排碳或固碳释氧功能,分析区域系统的碳氧平衡状况和生态压力。碳氧平衡理论对分析区域碳平衡状况以及评估区域植被的生态功能均有一定的意义。

4 区域二元碳收支研究进展

近年来,国内外学者从不同空间尺度开展了区域二元碳收支研究,这不仅为区域碳收支理论框架的构建提供了大量案例参考,也为区域碳减排策略的制定和低碳发展模式的选择提供了数据支撑和实践指导。

4.1 全球尺度的二元碳收支研究

全球尺度的研究主要包括以下几个方面:①全球二元碳收支核算。如全球碳计划和二氧化碳信息分析中心(Carbon Dioxide Information Analysis Center, CDIAC)等都对全球碳收支进行较为详尽的核算(Le Quéré et al, 2013, Carbon Dioxide Information Analysis Center, 2014),其中重点考虑了化石燃料燃烧、水泥生产、土地利用变化及森林砍伐等人类活动的碳排放的核算及其对碳平衡的影响;②人类活动对全球碳收支的影响。20世纪70年代以来,人类活动与全球碳收支的关系(Broecker et al, 1979)受到国际学术界的关注。研究发现:人类工业化过程的化石燃料燃烧严重干扰了全球的碳平衡状况(Falkowski et al, 2000);另外,土地利用也被认为是影响全球碳平衡的重要因素(Houghton, 1999),土地利用/覆被变化导致的净碳排放占到1990-2010年全球人类活动碳排放的12.5%(Houghton et al, 2012);③全球碳收支变化的机制及对气候变化的影响预测。全球碳收支平衡研究的核心是了解碳源/碳汇的形成机制,并对未来大气CO2浓度及气候变化的速率进行精确预测(Houghton, 2007)。全球碳收支的变化受自然和社会经济等多因素的影响,为探索碳收支的影响机制,国内外学者开展了全球碳失汇(the missing sinks)的研究(Houghton et al, 1998),并认为最有可能存在于北半球中高纬度的陆地生态系统中(方精云等, 2001)。在碳收支对气候变化的影响方面,IPCC及一些国际组织基于全球碳收支状况及其变化特征的预测,提出了“2度”阈值的概念,在客观上有利于推动全球气候变化和碳减排国际谈判的深入,并赋予碳收支研究更多的政治和社会内涵(IPCC, 2014)。总体而言,全球尺度的二元碳收支研究重点关注地球系统碳收支平衡动态及其驱动机制,并探索其对气候变化和地球环境的影响与反馈,目的是了解全球环境变化的可能趋势,并为碳减排的国际谈判提供指导。这成为近年来全球气候变化和地球系统研究的重点领域之一。

4.2 国家层面的二元碳收支研究

该类研究主要包括:

(1) 国家碳排放清单核算。IPCC在1996年和2006年分别提出了国家温室气体清单指南及修订版,并于2012年研制了温室气体清单核算软件,成为世界各国开展碳收支核算的重要依据,并在国际上得到较广泛的应用。比如国际上对美国(Houghton et al, 1999)、中国(Wang et al, 2005)、印度(Paul et al, 2004)和巴西(Machado et al, 2001)等国的碳收支开展了研究。但国内外对IPCC的核算方法也存在争议,Liu等(2015)研究认为,由于碳排放因子的差异,中国的碳排放被高估了14%。国家碳排放清单核算是开展气候变化谈判的重要依据,因此,如何在碳排放清单核算的基础上,进行碳减排的国家责任划分是当前的一个重要研究内容。

(2) 国家碳收支的影响机制研究。早期对国家碳收支影响机制的研究主要是从生态管理和土地利用的角度开展的,侧重于探讨人类活动引致的环境变化对碳收支的影响机制。研究发现,19世纪80年代,美国土地管理所带来的碳汇抵消了美国化石燃料碳排放的10%~30%(Houghton et al, 1999);在中国,森林砍伐会带来大量的碳排放 (Houghton et al, 2003),而植树造林是增加碳汇的重要措施(Fang et al, 2001);Turner等(1997)以前苏联、美国和巴西等国家的净碳通量为例,重点从土地覆盖变化、森林采伐、土壤有机质积累等角度对国家级地面碳收支的因素进行了分析。近年来,一些学者尝试将国家碳收支与社会活动、能源消费、产业发展等相结合,从人类经济活动的视角进一步开展碳收支的影响机制的探讨。比如:部分学者从碳收支核算及其因素分解(孙建卫等, 2010)、碳收支的土地利用优化(赖力等, 2011)、产业活动的碳足迹(赵荣钦等, 2010)及碳收支的空间格局演变(蒋金亮等, 2014)等角度分析了国家尺度碳收支的影响因素和发展趋势,为国家层面开展“自然”和“社会”二元碳收支的综合研究提供了新的视角,有助于从人类经济社会系统运行的角度进一步分析二元碳收支的变化规律。

4.3 省级层面的二元碳收支研究

省级层面二元碳收支研究可以归结为3个方面:①省区碳收支核算及时空特征分析。省区碳收支核算是省域空间碳排放效率和压力评估的重要途径。国内学者对长三角地区(孙伟等, 2012)、江苏省(赵荣钦, 黄贤金, 高珊等, 2013)、安徽省(孙秀丽, 2010)及广东省(肖慧娟等, 2006; 匡耀求等, 2010; 黄潮清, 2013)等省级尺度的二元碳收支进行了核算,并分析了其时空特征和影响机制。研究发现:随着快速城市化和工业化进程,人类活动强度的增加和陆地植被面积减少,区域碳收支不平衡性不断加剧(孙伟等, 2012),这使区域面临重大的碳循环压力。其中,城市化是区域碳收支格局改变的直接推动力(肖慧娟等, 2006),而工业和交通能源消费的大幅增长是改变区域碳平衡的重要因素(赵荣钦, 黄贤金, 高珊等, 2013),②省区二元碳循环模拟。基于区域自然和经济系统的内在关系和流通机制,Marchi等(2012)建立了省级尺度碳循环模拟的框架,并对意大利Siena省自然和人为系统不同模块之间的碳流通进行了模拟与分析,这为省级尺度上碳收支模拟提供了重要的理论和方法参考;③省区间的碳流通与碳转移研究。一些学者基于网络碳排放流方法(Kang et al, 2012)和投入产出分析(姚亮等, 2010; 石敏俊等, 2012)对中国不同区域之间的碳转移和隐含碳流通进行了研究。研究发现:能源和产品的流通导致了大量的区域之间的碳转移和隐含碳流通,这不仅改变了省区之间的碳排放格局,也改变省区之间碳排放与经济发展之间的关系,其中东北区域、京津区域、南部沿海区域、西北区域和西南区域对区域经济拉动作用总量大于其承接其他区域拉动作用的总量(姚亮等, 2010)。由此可以看出,省域层面的二元碳收支研究与国家层面不同,其核心内容是碳收支空间格局、碳循环模拟和碳流通机理研究,为开展区域之间的碳流通及其效率研究提供了很好的方法和思路借鉴,在理论和实践上进一步丰富了区域二元碳收支的研究体系,为指导区域碳减排和低碳发展的实践提供了重要参考。

4.4 城市层面的二元碳收支研究

城市层面碳收支包括以下几个方面:

(1) 城市碳收支模拟。城市碳收支模拟不仅涉及自然过程,更重要的是要将自然与社会碳收支过程相结合,建立涵盖人为碳储量与碳通量过程的综合模型(Pataki et al, 2006; Churkina, 2008)。如:Churkina等(2010)对美国人类聚落区的自然和人为碳储量进行了核算,发现城市建筑物碳储量仅次于土壤,可见人类活动对城市层面的碳收支平衡也具有重要影响。另外,植被的碳汇功能可在一定程度上平衡城市的碳收支状况(Escobedo et al, 2010),例如:美国奥克兰(Oakland)(Nowak, 1993)、凤凰城(Phoenix)(Koerner et al, 2002),韩国春川(Chuncheon)、江陵(Kangleung)和首尔(Seoul) (Jo, 2002)及中国杭州(Zhao et al, 2010)等城市案例研究表明:城市植被的碳吸收对城市产业及能源活动的碳排放具有一定的补偿效果,其补偿率可达18.57%(Zhao et al, 2010)。近年来,国内学者也开展了城市碳收支核算框架(钱杰, 2004; 王海鲲等, 2011; 蔡博峰, 2014)、城市碳平衡 (马巾英等, 2011; 赵荣钦, 黄贤金, 彭补拙, 2012)及城市植被的碳补偿(Zhao et al, 2010)等的研究,初步构建了城市碳收支模拟的理论和方法,为城市碳排放因子的获取与城市碳平衡研究提供了重要参考。

(2) 城市碳收支及其变化的影响因素分析。城市碳收支受多种因素影响,比如,Svirejeva-Hopkins等(2008)基于人口增长的视角,提出了基于人口密度空间分布的双参数“Γ分布”模型,基于区域和世界碳排放和城市碳输出的动态对城市化进行了情景预测,并对城市年碳平衡进行了估算;Zhao等对南京市碳足迹和碳循环压力进行了分析,探讨了不同土地利用方式的碳储量与碳通量,并从土地利用的角度分析了影响碳排放变化的因素(赵荣钦, 黄贤金, 钟太洋等, 2012; Zhao R Q, Huang X J, Liu Y, et al, 2014; Zhao et al, 2015);张善峰等(2015)分析了土地利用变化与城市碳收支空间分异的关系,并认为杭州市及各区的固碳损失主要是由于耕地向建设用地转化造成的;钱杰(2004)和赵敏(2010)基于城市碳收支核算模型,对上海市碳源碳汇结构的变化进行了分析,并探讨了能源利用与产业活动等对城市碳收支的驱动作用;Hao等(2015)对广元市的碳收支进行了模拟,并分析了地震灾害及重建对区域碳收支的影响。以上研究表明:自然环境条件、人口增长、能源消费、土地利用和产业结构等是城市碳收支变化的主要原因。

(3) 城市碳流通与碳代谢研究。国外一些学者从城市整体层面开展了城市碳流通和碳代谢的研究。例如:Bullock等(2011)对墨西哥城市系统的碳流通和碳平衡进行了分析;Warren-Rhodes等(2001)对香港的城市代谢趋势进行了分析;Zhao等通过研究城市与外部系统、城市内部子系统之间的碳流通以及城乡之间的隐含碳流通过程,对南京市城市碳流通进行了分析和测算,构建了南京市城市系统碳流通图(Zhao R Q, Huang X J, Zhong T Y et al, 2014)。另外,城市碳流通也可以从不同产业部门、能源消费过程和土地利用等不同角度开展。如:Chen等(2012)通过城市碳代谢的网络分析方法,对城市不同部门的碳代谢和转移过程进行了探讨;谢士晨等(2009)构建了上海市能源消费碳流通图,分析了不同能源类型、产业部门和能源加工转换与损失等过程的碳流通;Svirejeva-Hopkins等(2006)基于城市土地利用的划分对土地利用变化的碳动态过程进行了模拟,并分析了城市变化与碳通量的关系。总体而言,不同尺度区域碳流通研究的侧重点不同,省级层面的研究主要侧重于区域之间的碳流通,而城市层面侧重于通过子系统之间的碳流及代谢效率、隐含碳等分析城市内部的碳流通过程。

4.5 城区、县域或社区层面的二元碳收支研究

区域碳收支研究也可以在城区、县域或社区层面展开。比如:Christen等(2010)运用城市代谢的理论,将遥感数据、LiDAR数据、统计数据等相结合,通过对植被土壤、建筑物、废弃物、食物和人体、道路交通运输等5个模块的碳储量和碳通量的叠加整合分析,对温哥华Sunset社区的碳收支进行了模拟,并将计算结果落实到50米栅格的社区空间,该研究构建了较为系统的城市社区层面碳代谢研究的方法;汤洁等(2009)提出了基于县域碳平衡的土地利用结构优化的方法;赵荣钦等(2014)对中原经济区县域空间的碳收支进行了核算,并在不同区域碳收支强度和碳平衡分区的基础上,提出了中原经济区主体功能区优化的思路,这为基于低碳的县域空间公平发展提供了参考借鉴;基于社区尺度,何华(2010)采用生命周期评价方法对华南居住区绿地碳汇功能开展了研究;胡玥昕等(2014)基于系统动力学的角度,构建了校园碳收支测算的模型,并以浙江农林大学为例进行了实证。以上研究进一步丰富了区域碳收支的案例研究,其中,基于城区尺度或县域尺度研究,为区域规划、城市规划布局和县域空间的公平发展提供了较好的思路借鉴;而社区层面的碳收支研究,为居住区低碳管理和节能减排提供了技术和数据支撑。

4.6 典型人类活动的二元碳收支或碳足迹研究

近年来,碳收支也被应用于典型产业、开发项目及人类活动的评估中,一些学者针对土地利用(或农业耕作活动)(游和远等, 2010; 余德贵等, 2011; 王渊刚等, 2014)、旅游开发(周年兴等, 2013; Sung et al, 2015)、大型水电项目(Zhang et al, 2015)等开展了碳收支的核算和评估研究。如赵荣钦(2012)和余德贵等(2011)提出了基于碳排放约束的土地利用结构优化模型,对指导地方土地规划的实践起到了积极作用;谭梦等(2011)探讨了土地整理对农田土壤碳含量的影响,为汇碳的土地整理技术和模式提供了参考;曹淑艳等(2010)对中国不同产业间的直接和间接碳足迹流进行了分析,探讨了不同产业直接和间接碳足迹的差异,为产业低碳管理、产业结构优化提供了借鉴;王渊刚等(2014)基于Bookkeeping模型,对新疆耕地变化对区域碳平衡的影响进行了分析,研究发现:耕地转移、土地开垦及水土开发活动是影响区域碳收支的重要因素;蒋冬梅等(2015)对中国耕作非农化活动的碳收支及其空间差异进行了研究,为中国低碳农业发展提供了参考。以上案例从不同的角度开展了典型产业和人类活动的碳收支的应用研究,进一步拓展碳收支研究的微观领域。另外,碳收支和碳足迹也用于评估企业活动或产品的隐含碳排放。例如,一些学者开展了针对家庭(Fan et al, 2012)、产品生产(Adom et al, 2012; Wells et al, 2012)或某种人类活动(Filimonau et al, 2011; Chang et al, 2012)的碳足迹研究,其中对产品碳足迹的研究最多,主要是采用生命周期评价方法开展某种产品全生命周期的碳排放的核算(Zhao R Q, Huang X J, Liu Y et al, 2014),为定量评估某种产品的环境影响提供了重要的方法。在国外,碳足迹研究还应用于商品的碳标识(Gadema et al, 2011),为低碳产品的宣传和普及起到了重要的推动作用。

总体而言,区域二元碳收支是一个高度复杂的系统过程,不仅包含垂直碳收支和水平碳收支、自然碳收支与人为碳收支,还包括区域外部的碳交换及内部的碳流通与碳代谢过程。区域碳收支研究既可以基于不同空间尺度进行,也可以从产业活动、土地利用及典型人类活动的角度入手。区域碳收支研究的核心是从自然和社会2个角度构建区域碳收支的估算模型,一方面需要各种自然和社会经济数据开展碳收支和碳平衡核算,建立区域碳收支的基础数据库;另一方面也需要开展区域碳收支影响机制的跨学科研究(Churkina, 2008),这样才能更深入地了解区域碳收支的过程和机制。

5 总结与展望

5.1 研究总结

随着碳循环研究的深入和国际碳减排谈判的推动,近年来区域碳收支研究出现了一些新的变化。主要表现在:

(1) 区域碳收支研究内容从单纯的自然过程转向自然和人为过程的结合。以往的碳收支研究主要集中在陆地生态系统领域,重点是借助遥感、实验观测和过程模拟等手段对区域陆地生态系统的碳储量与碳通量进行研究,并探讨其碳汇功能和碳平衡的时空分布状况。近年来碳收支进一步延伸到对社会系统碳输入和输出过程的核算和模拟,将能源消费、土地利用及产业活动等纳入进来,并力图建立不同空间尺度的“自然-社会”二元碳收支模拟模型,从整体上阐明人类活动对区域碳收支的影响,以寻求应对全球气候变化的减缓和适应对策。

(2) 区域碳收支研究尺度从侧重于宏观研究延伸到微观和宏观2个层面的研究。前期研究主要是从区域尺度上开展生态系统碳收支的研究,一是基于资源清查的植被碳储量研究,二是基于碳通量观测的微观和宏观层面的结合研究。近年来,区域社会系统碳收支则涉及到多个研究尺度,从国家、省区、城市到城区和社区,也有些学者开展了企业和家庭碳收支和碳代谢的研究,推动了碳收支研究向多尺度应用领域拓展。

(3) 碳收支研究从理论和模拟研究开始转向社会应用领域。前期研究更多是理论研究和实验模拟,通过阐明生态系统的碳收支状况和碳汇功能的时空变化,为国家应对气候变化提供数据支撑。近年来,区域碳收支研究开始与社会问题相结合,并具有了新的应用前景和实践价值。一是将碳收支核算与国家或区域碳排放权分配相结合,为国家碳减排配额分配和区域碳交易提供数据支撑;二是将碳收支作为区域生态压力评估的方法应用于规划实践中,如城市总体规划、产业发展规划及土地利用规划等,为区域经济社会发展与规划提供实践指导;三是将碳收支研究与社会导向和个人行为相结合,通过碳收支评估引导个人消费行为和低碳观念,从而在社会低碳转型中起到积极作用。

5.2 研究展望

总体而言,已有研究从不同空间尺度开展了区域碳收支和碳平衡研究,对于二元碳收支理论体系的构建起到了重要的推动作用。但未来在以下方面还需要进一步加强:

(1) 区域二元碳收支的集成模拟研究。今后在区域碳收支研究领域,要努力构建完整的区域碳收支集成研究体系,该体系应综合涵盖区域自然和社会碳收支过程,水平和垂直碳收支过程,区域内外的碳转移和碳流通过程,区域产业发展的碳代谢过程等。将区域作为一个人工生态系统,构建涵盖各种过程、不同尺度、各种活动行为过程的综合碳收支模型,并分析碳收支不同环节的驱动机理。

(2) 区域碳收支的空间分异规律研究。区域内部具有较大的空间异质性。因此,应加强区域碳收支空间分异规律的研究,探讨区域内部城乡之间、不同城市之间和城市内部的碳收支特征及其影响机制,从而进一步深入探索区域尺度上人类活动对碳收支的不同影响。

(3) 基于区域碳收支核算的区域横向碳补偿研究。在区域二元碳收支综合集成模拟的基础上,将区域碳收支与国家主体功能区规划相结合,基于碳排放强度约束目标构建不同碳收支类型区的开发模式和策略;基于碳收支的核算结果,尝试开展区域横向碳补偿的试点示范,以碳为纽带推动区域内部公平和均衡发展,为建立全国统一的碳交易市场提供地区间配额分配的依据。

(4) 区域碳收支与区域资源环境效应的关系。“碳”是区域社会的关键要素之一,与诸多资源、能源类型的开发、输送和使用等过程密切相关。因此,在全球变化背景下,应该进一步探索碳收支与资源开发的耦合作用机制,比如:区域“水-土-能-碳”耦合循环的效率和机制,各种能源资源开发利用活动中的碳收支效应,土地利用、整理和复垦等活动的碳排放效应等。从而将碳收支作为衡量和评价人类活动对自然环境影响程度的重要工具,进一步拓展碳收支的应用领域。

(5) 区域碳收支的综合调控研究。人类社会是一个复杂的系统工程,区域碳收支受人类活动强度、生产效率、运输效率、城镇格局及政策因素等多方面影响。因此,基于区域系统的角度,如何考虑从区域能量流和物质流的规模和方式、资源开发模式、产业结构、土地低碳优化、城镇形态等多方面构建区域碳收支的调控体系,并开展面向低碳的区域碳收支调控的试点研究,建立基于碳排放约束的区域综合开发模式和方案,是一个值得今后研究的重大问题,也需要具有多学科交叉的视角和诸多科学家的共同努力。

The authors have declared that no competing interests exist.


参考文献

[1] 蔡博峰. 2014. 城市温室气体清单核心问题研究[M]. 北京: 化学工业出版.

[本文引用: 1]     

[Cai B F.2014. Study on key issues of city carbon emission inventory[M]. Beijing, China: Chemical Industrial Press.]

[本文引用: 1]     

[2] 曹淑艳, 谢高地. 2010.

中国产业部门碳足迹流追踪分析

[J]. 资源科学, 32(11): 2046-2052.

Magsci      摘要

研究利用投入产出技术综合分析了2007年中国52个产业部门碳足迹的流动情况。该年中国产业部门完全碳足迹为71.0亿tCO<sub>2</sub>,其中直接碳足迹与间接碳足迹分别为52.5亿与18.5亿tCO<sub>2</sub>;支持本国终端消费发生的碳足迹为47.0亿t CO<sub>2</sub>,支持出口发生的碳足迹为24.0亿tCO<sub>2</sub>。在国际贸易中,中国碳足迹是赤字的,赤字幅度达5.5亿tCO<sub>2</sub>,占本国源碳足迹总量的10.5%。产业部门之间的碳足迹流动非常活跃,82.3%的完全碳足迹发生了产业部门再分配。间接碳足迹流活跃组(B1组)与直接碳足迹流活跃组(B2组)的产业部门是中国碳足迹流动的主体部门,也是碳足迹管理的核心对象。B1组部门的间接碳足迹是其直接碳足迹的12.6倍,在贸易中是碳足迹盈余的,盈余量合计为31.9亿tCO<sub>2</sub>。B2组部门的直接能耗碳足迹高居全国前10位,合计为39.5亿tCO<sub>2</sub>,其中89.9%的碳足迹转移到其他部门终端产品之中。从碳足迹的性质上,B1组部门属于实质高碳型部门,碳足迹管理应走“减物质化”的道路;B2组中有一半部门属于表观高碳型部门,碳足迹管理应以提高能源效为核心,另一半部门属于实质高碳与表观高碳并存型的部门,碳足迹管理应走“减物质化”与提高能效率并重的道路。

[Cao S Y, Xie G D.2010.

Tracking analysis of carbon footprint flow of China&amp;#x02019;s industrial sectors

[J]. Resources Science, 32(11): 2046-2052.]

Magsci      摘要

研究利用投入产出技术综合分析了2007年中国52个产业部门碳足迹的流动情况。该年中国产业部门完全碳足迹为71.0亿tCO<sub>2</sub>,其中直接碳足迹与间接碳足迹分别为52.5亿与18.5亿tCO<sub>2</sub>;支持本国终端消费发生的碳足迹为47.0亿t CO<sub>2</sub>,支持出口发生的碳足迹为24.0亿tCO<sub>2</sub>。在国际贸易中,中国碳足迹是赤字的,赤字幅度达5.5亿tCO<sub>2</sub>,占本国源碳足迹总量的10.5%。产业部门之间的碳足迹流动非常活跃,82.3%的完全碳足迹发生了产业部门再分配。间接碳足迹流活跃组(B1组)与直接碳足迹流活跃组(B2组)的产业部门是中国碳足迹流动的主体部门,也是碳足迹管理的核心对象。B1组部门的间接碳足迹是其直接碳足迹的12.6倍,在贸易中是碳足迹盈余的,盈余量合计为31.9亿tCO<sub>2</sub>。B2组部门的直接能耗碳足迹高居全国前10位,合计为39.5亿tCO<sub>2</sub>,其中89.9%的碳足迹转移到其他部门终端产品之中。从碳足迹的性质上,B1组部门属于实质高碳型部门,碳足迹管理应走“减物质化”的道路;B2组中有一半部门属于表观高碳型部门,碳足迹管理应以提高能源效为核心,另一半部门属于实质高碳与表观高碳并存型的部门,碳足迹管理应走“减物质化”与提高能效率并重的道路。
[3] 揣小伟. 2013.

沿海地区土地利用变化的碳效应及土地调控研究: 以江苏沿海为例[D]

. 南京: 南京大学.

[Chuai X W.2013.

Carbon effect caused by land use changes and its land use control in coastal regions: The case study of coastal region in Jiangsu Province[D].

Nanjing, China: Nanjing University.]

[4] 方精云, 郭兆迪, 朴世龙, . 2007.

1981-2000年中国陆地植被碳汇的估算

[J]. 中国科学 D辑: 地球科学, 37(6): 804-812.

URL     

[Fang J Y, Guo Z D, Piao S L, et al.2007.

Terrestrial vegetation carbon sinks in China, 1981-2000

[J]. Science in China Series D: Earth Sciences, 50(9): 1341-1350.]

URL     

[5] 方精云, 朴世龙, 赵淑清. 2001.

CO2失汇与北半球中高纬度陆地生态系统的碳汇

[J]. 植物生态学报, 25(5): 594-602.

Magsci      [本文引用: 2]      摘要

化石燃料消耗及热带林破坏导致约7.0PgC&middot;a-1(1Pg=109t)的CO2向大气排放,其中3.0~3.4PgC&middot;a-1的CO2被用于大气CO2浓度的升高,约2.0PgC&middot;a-1的CO2被海洋吸收,而陆地生物圈被认为是CO2净吸收与净排放基本达到平衡。因此,在人工源CO2中,尚有1.6~2.0PgC&middot;a-1的CO2去向不明。这就是著名的CO2失汇之谜。大气成分监测、CO2通量测定以及模型模拟等方面的研究都表明,北半球陆地生态系统是一个重要的碳汇,但其值存在很大的不确定性,且具有较大的时空变化。全球温暖化、CO2施肥效应,氮和磷沉降的增加以及人工植被的扩大是形成碳汇的主要因素。为减少碳汇估计值的不确定性,除加强长期定位监测、改良现有估测模型外,重视研究土壤圈在碳循环中的作用至关重要。

[Fang J Y, Piao S L, Zhao S Q.2001.

The carbon sink: The role of the middle and high latitudes terrestrial ecosystems in the Northern Hemisphere

[J]. Acta Phytoecologica Sinica, 25(5): 594-602.]

Magsci      [本文引用: 2]      摘要

化石燃料消耗及热带林破坏导致约7.0PgC&middot;a-1(1Pg=109t)的CO2向大气排放,其中3.0~3.4PgC&middot;a-1的CO2被用于大气CO2浓度的升高,约2.0PgC&middot;a-1的CO2被海洋吸收,而陆地生物圈被认为是CO2净吸收与净排放基本达到平衡。因此,在人工源CO2中,尚有1.6~2.0PgC&middot;a-1的CO2去向不明。这就是著名的CO2失汇之谜。大气成分监测、CO2通量测定以及模型模拟等方面的研究都表明,北半球陆地生态系统是一个重要的碳汇,但其值存在很大的不确定性,且具有较大的时空变化。全球温暖化、CO2施肥效应,氮和磷沉降的增加以及人工植被的扩大是形成碳汇的主要因素。为减少碳汇估计值的不确定性,除加强长期定位监测、改良现有估测模型外,重视研究土壤圈在碳循环中的作用至关重要。
[6] 戈峰. 2007. 现代生态学[M]. 北京: 科学出版社.

[Ge F.2007. Xiandai shengtaixue[M]. Beijing, China: Science Press.]

[7] 管东生, 陈玉娟, 黄芬芳. 1998.

广州城市绿地系统碳的贮存、分布及其在碳氧平衡中的作用

[J]. 中国环境科学, 18(5): 437-441.

URL      [本文引用: 1]     

[Guan D S, Chen Y J, Huang F F.1998.

The storage and distribution of carbon in urban vegetation and its roles in balance of carbon and oxygen in Guangzhou

[J]. China Environmental Science, 18(5): 437-441.]

URL      [本文引用: 1]     

[8] 郝千婷, 黄明祥, 包刚. 2011.

碳排放核算方法概述与比较研究

[J]. 中国环境管理, (4): 51-55.

https://doi.org/10.3969/j.issn.1674-6252.2011.04.012      URL      摘要

全球气候变化是当今全球关注的焦点和研究热点,碳排放核算对温室气体减排和控制具有重要意义。对当前碳排放核算方法进行了概述,介绍了各核算方法的基本原理和方法,并分析了各核算方法的特点,将为碳排放核算及其方法的选取提供参考依据。

[Hao Q T, Huang M X, Bao G.2011.

Study on carbon emission calculation methods overview and its comparison

[J]. Chinese Journal of Environmental Management, (4): 51-55.]

https://doi.org/10.3969/j.issn.1674-6252.2011.04.012      URL      摘要

全球气候变化是当今全球关注的焦点和研究热点,碳排放核算对温室气体减排和控制具有重要意义。对当前碳排放核算方法进行了概述,介绍了各核算方法的基本原理和方法,并分析了各核算方法的特点,将为碳排放核算及其方法的选取提供参考依据。
[9] 何华. 2010.

华南居住区绿地碳汇作用研究及其在全生命周期碳收支评价中的应用[D]

. 重庆: 重庆大学.

[本文引用: 1]     

[He H.2010.

Research on green space carbon sink of residential area in South China and its application in carbon budget of residential area for whole life circle[D].

Chongqing, China: Chongqing University.]

[本文引用: 1]     

[10] 胡玥昕, 江洪, 王颖. 2014.

基于系统动力学的校园碳收支测算模型及应用

[J]. 浙江农林大学学报, 31(6): 850-859.

https://doi.org/10.11833/j.issn.2095-0756.2014.06.005      Magsci      摘要

<p>以系统动力学VensimPLE软件为技术平台,结合Li COR-6400与Li COR-8100观测数据,以浙江农林大学东湖校区为研究对象,建立校园碳收支测算模型,对校园中人类活动系统碳排放与自然生态系统碳收支分别进行了测算,并提出低碳建设参考路径。模型测算结果表明:校园全年整体表现为碳源,年碳排放量为4 147.48 t&middot;a<sup>-1</sup>,平均单位面积碳排放量为3.24 t&middot;m<sup>-2</sup>&middot;a<sup>-1</sup>;人类活动碳排放量5 555.45 t&middot;a<sup>-1</sup>,人均碳排放强度为24.0 kg&middot;人<sup>-1</sup>&middot;月<sup>-1</sup>,其中,生活办公用电排碳量最大。自然生态系统年固碳量1 407.96 t&middot;a<sup>-1</sup>,季节变化呈现双峰特征,春秋两季较高,冬季最低。单位绿化面积碳吸收量为187.0 g&middot;m<sup>-2</sup>&middot;月<sup>-1</sup>。同时,低碳校园情景模拟中通过绿地碳汇、人均用能与交通用能等因素的共同控制,可比原始状态再实现29%的碳排放削减,说明校园低碳建设仍有一定发展空间。图10表4参30</p>

[Hu Y X, Jiang H, Wang Y.2014.

System dynamics modeling for carbon budget at a university campus

[J]. Journal of Zhejiang A &amp;#x00026; F University, 31(6): 850-859.]

https://doi.org/10.11833/j.issn.2095-0756.2014.06.005      Magsci      摘要

<p>以系统动力学VensimPLE软件为技术平台,结合Li COR-6400与Li COR-8100观测数据,以浙江农林大学东湖校区为研究对象,建立校园碳收支测算模型,对校园中人类活动系统碳排放与自然生态系统碳收支分别进行了测算,并提出低碳建设参考路径。模型测算结果表明:校园全年整体表现为碳源,年碳排放量为4 147.48 t&middot;a<sup>-1</sup>,平均单位面积碳排放量为3.24 t&middot;m<sup>-2</sup>&middot;a<sup>-1</sup>;人类活动碳排放量5 555.45 t&middot;a<sup>-1</sup>,人均碳排放强度为24.0 kg&middot;人<sup>-1</sup>&middot;月<sup>-1</sup>,其中,生活办公用电排碳量最大。自然生态系统年固碳量1 407.96 t&middot;a<sup>-1</sup>,季节变化呈现双峰特征,春秋两季较高,冬季最低。单位绿化面积碳吸收量为187.0 g&middot;m<sup>-2</sup>&middot;月<sup>-1</sup>。同时,低碳校园情景模拟中通过绿地碳汇、人均用能与交通用能等因素的共同控制,可比原始状态再实现29%的碳排放削减,说明校园低碳建设仍有一定发展空间。图10表4参30</p>
[11] 黄潮清. 2013.

广东省陆域碳收支时空格局研究[D]

. 南昌: 江西师范大学.

[本文引用: 1]     

[Huang C Q.2013.

Evolvement of spatial-temporl pattern of terrestrial carbonbudget in Guangdong Province[D].

Nanchang, China: Jiangxi Normal University.]

[本文引用: 1]     

[12] 黄贤金, 葛扬, 叶堂林, . 2009. 循环经济学[M]. 南京: 东南大学出版社.

[Huang X J, Ge Y, Ye T L, et al.2009. Xunhuan jingjixue[M]. Nanjing, China: Southeast University Press.]

[13] 蒋冬梅, 李效顺, 曲福田, . 2015.

中国耕地非农化趋势及其对碳收支影响的模拟

[J]. 农业工程学报, 31(17): 1-9.

Magsci      摘要

伴随快速工业化、城镇化进程,中国耕地非农化不断加快,由此带来碳排放迅速增加、生态环境和温室效应不断恶化。鉴于此,该文将耕地非农化与碳收支纳入统一框架,运用系统动力学方法模拟1996-2020年间耕地非农化带来的碳收支盈亏量。结果表明:1)整体分析判断,中国耕地非农化处于递增趋势且空间分布主要集中在东部,并呈现耕地规模递减、建设用地递增状态。2)模拟结果显示,1996-2020年全国耕地由1.293×108hm2减少到1.204×108hm2,建设用地从2.407×107 hm2增加到3.073×107 hm2,并且耕地非农化碳汇量由7.90×108t减少到7.48×108 t,碳源量从9.34×109 t增加到1.17×1010 t。3)区域比较发现,全国耕地非农化碳收支表现为碳源且总体上呈递增趋势,并且2020年东部地区碳支出量最大为5.029×109 t,西部次之为2.261×109 t,中部略小于西部为2.216×109 t,东北地区最小为1.084×109 t。

[Jiang D M, Li X S, Qu F T, et al.2015.

Simulation of cultivated land conversion trend and its effect on carbon budget in China

[J]. Transactions of the Chinese Society of Agricultural Engineering, 31(17): 1-9.]

Magsci      摘要

伴随快速工业化、城镇化进程,中国耕地非农化不断加快,由此带来碳排放迅速增加、生态环境和温室效应不断恶化。鉴于此,该文将耕地非农化与碳收支纳入统一框架,运用系统动力学方法模拟1996-2020年间耕地非农化带来的碳收支盈亏量。结果表明:1)整体分析判断,中国耕地非农化处于递增趋势且空间分布主要集中在东部,并呈现耕地规模递减、建设用地递增状态。2)模拟结果显示,1996-2020年全国耕地由1.293×108hm2减少到1.204×108hm2,建设用地从2.407×107 hm2增加到3.073×107 hm2,并且耕地非农化碳汇量由7.90×108t减少到7.48×108 t,碳源量从9.34×109 t增加到1.17×1010 t。3)区域比较发现,全国耕地非农化碳收支表现为碳源且总体上呈递增趋势,并且2020年东部地区碳支出量最大为5.029×109 t,西部次之为2.261×109 t,中部略小于西部为2.216×109 t,东北地区最小为1.084×109 t。
[14] 蒋金亮, 徐建刚, 吴文佳, . 2014.

中国人-地碳源汇系统空间格局演变及其特征分析

[J]. 自然资源学报, 29(5): 757-768.

[本文引用: 1]     

[Jiang J L, Xu J G, Wu W J, et al.2014.

Patterns and dynamics of China&amp;#x02019;s human-nature carbon source-sink system

[J]. Journal of Natural Resources, 29(5): 757-768.]

[本文引用: 1]     

[15] 匡耀求, 欧阳婷萍, 邹毅, . 2010.

广东省碳源碳汇现状评估及增加碳汇潜力分析

[J]. 中国人口&amp;#x000b7;资源与环境, 20(12): 56-61.

URL      [本文引用: 1]     

[Kuang Y Q, Ouyang T P, Zou Y, et al.2010.

Present situation of carbon source and sink and potential for increase of carbon sink in Guangdong Province

[J]. China Population, Resources and Environment, 20(12): 56-61.]

URL      [本文引用: 1]     

[16] 赖力, 黄贤金. 2011. 中国土地利用的碳排放效应研究[M]. 南京: 南京大学出版社.

[本文引用: 1]     

[Lai L, Huang X J.2011. Carbon emission effect of land use in China[M]. Nanjing, China: Nanjing University Press.]

[本文引用: 1]     

[17] 马巾英, 尹锴, 吝涛. 2011.

城市复合生态系统碳氧平衡分析: 以沿海城市厦门为例

[J]. 环境科学学报, 31(8): 1808-1816.

Magsci      [本文引用: 2]      摘要

通过综合城市复合生态系统内社会经济活动的主要排碳、耗氧行为,以及城市区域内湿地、淡水、海洋、森林和农田5种遗留自然生态系统的固碳释氧功能,构建了城市碳氧平衡分析模型(UCOB),并估算了城市社会经济活动和城市中自然生态系统的碳氧收支,对城市生态系统平衡状况进行定量化指征.最后,以中国东南沿海城市厦门为例进行研究.结果显示:厦门市2007年碳平衡系数为9.03,即二氧化碳释放量是其所能吸收能力的9.03倍;氧平衡系数为5.78,即社会经济活动消耗的氧气是当地自然生态系统所能提供氧气量的5.78倍.如果不考虑电力消耗产生间接排碳耗氧数量,厦门市2007年全市碳平衡系数为5.26,氧平衡系数为1.47.由于社会经济活动功能和自然生态系统分布的差异,厦门市6个行政分区的碳氧平衡产生显著的差异.其中,作为老工业区的湖里区碳氧失衡状况最显著,如不考虑间接排碳耗氧量,作为新兴工业区的海沧区碳氧失衡最严重;位于城市郊区的同安区和翔安区由于保存大面积自然生态系统,碳氧平衡状况相对良好.最后,从城市定位和分区功能对厦门城市碳氧平衡未来发展及其对策进行了探讨.本文将有助于深入理解城市生态系统中碳氧平衡状况,指导合理的城市总体规划和功能分区,为实现持续低碳城市化提供科学依据.

[Ma J Y, Yin K, Lin T.2011.

Analysis of the carbon and oxygen balance of a complex urban ecosystem: A case study in the coastal city of Xiamen

[J]. Acta Scientiae Circumstantiae, 31(8): 1808-1816.]

Magsci      [本文引用: 2]      摘要

通过综合城市复合生态系统内社会经济活动的主要排碳、耗氧行为,以及城市区域内湿地、淡水、海洋、森林和农田5种遗留自然生态系统的固碳释氧功能,构建了城市碳氧平衡分析模型(UCOB),并估算了城市社会经济活动和城市中自然生态系统的碳氧收支,对城市生态系统平衡状况进行定量化指征.最后,以中国东南沿海城市厦门为例进行研究.结果显示:厦门市2007年碳平衡系数为9.03,即二氧化碳释放量是其所能吸收能力的9.03倍;氧平衡系数为5.78,即社会经济活动消耗的氧气是当地自然生态系统所能提供氧气量的5.78倍.如果不考虑电力消耗产生间接排碳耗氧数量,厦门市2007年全市碳平衡系数为5.26,氧平衡系数为1.47.由于社会经济活动功能和自然生态系统分布的差异,厦门市6个行政分区的碳氧平衡产生显著的差异.其中,作为老工业区的湖里区碳氧失衡状况最显著,如不考虑间接排碳耗氧量,作为新兴工业区的海沧区碳氧失衡最严重;位于城市郊区的同安区和翔安区由于保存大面积自然生态系统,碳氧平衡状况相对良好.最后,从城市定位和分区功能对厦门城市碳氧平衡未来发展及其对策进行了探讨.本文将有助于深入理解城市生态系统中碳氧平衡状况,指导合理的城市总体规划和功能分区,为实现持续低碳城市化提供科学依据.
[18] 钱杰. 2004.

大都市碳源碳汇研究: 以上海市为例

[D]. 上海: 华东师范大学.

[本文引用: 1]     

[Qian J.2004.

Research on metropolis carbon sources and sinks: A case study of Shanghai City

[D]. Shanghai, China: East China Normal University.]

[本文引用: 1]     

[19] 秦耀辰. 2013. 低碳城市研究的模型与方法[M]. 北京: 科学出版社.

[Qin Y C.2013. Studies on low-carbon city models and methods[M]. Beijing, China: Science Press.]

[20] 佘群芝, 贾净雪. 2014.

中国对外贸易隐含碳排放核算及责任分配研究: 基于&消费者和生产者共同负责原则

[J]. 中南民族大学学报: 人文社会科学版, 34(6): 132-137.

[本文引用: 1]     

[She Q Z, Jiang J X.2014.

Zhongguo duiwai maoyi yinhan tanpaifang hesuan ji zeren fenpei yanjiu: Jiyu “xiaofeizhe he shengchanzhe gongtong fuze” yuanze

[J]. Journal of South-Central University for Nationalities: Humanities and Social Sciences, 34(6): 132-137.]

[本文引用: 1]     

[21] 石敏俊, 王妍, 张卓颖, . 2012.

中国各省区碳足迹与碳排放空间转移

[J]. 地理学报, 67(10): 1327-1338.

Magsci      [本文引用: 1]      摘要

减排责任的区域分解需要科学评价各地区的排放责任。碳足迹可以全面客观地评价为满足消费而进行的生产的生命周期碳排放水平, 除了生产过程的直接碳排放, 也包括生产过程中所消耗的中间产品的隐含碳排放。应用2007 年各省区投入产出模型和2002 年中国省区间投入产出模型, 定量测算了各省区的碳足迹和省区间的碳排放转移。结果显示, 各省区之间碳足迹和人均碳足迹存在显著的差异。碳足迹较大的省份为经济大省, 主要分布在北方地区;人均碳足迹较高的省份主要是北京、上海等中心城市和能源富集区域及重化工基地;中国存在着从能源富集区域和重化工基地分布区域向经济发达区域和产业结构不完整的欠发达区域的碳排放空间转移。上述结果表明, 人均碳足迹高的经济发达省份应承担较大的减排责任, 能源富集区域和重化工基地分布区域有相当一部分的碳排放是为沿海发达省份和产业结构不完整的欠发达省份提供电力、原材料等高碳产品所致, 减排责任的区域分解需要考虑碳排放空间转移的因素, 适当减轻能源富集区域和重化工基地分布区域的减排责任, 或使沿海发达省份向能源富集区域和重化工区域提供资金和技术上的扶持, 帮助这些区域提高能源利用效率, 减少碳排放。

[Shi M J, Wang Y, Zhang Z Y, et al.2012.

Regional carbon footprint and interregional transfer of carbon emissions in China

[J]. Acta Geographica Sinica, 67(10): 1327-1338.]

Magsci      [本文引用: 1]      摘要

减排责任的区域分解需要科学评价各地区的排放责任。碳足迹可以全面客观地评价为满足消费而进行的生产的生命周期碳排放水平, 除了生产过程的直接碳排放, 也包括生产过程中所消耗的中间产品的隐含碳排放。应用2007 年各省区投入产出模型和2002 年中国省区间投入产出模型, 定量测算了各省区的碳足迹和省区间的碳排放转移。结果显示, 各省区之间碳足迹和人均碳足迹存在显著的差异。碳足迹较大的省份为经济大省, 主要分布在北方地区;人均碳足迹较高的省份主要是北京、上海等中心城市和能源富集区域及重化工基地;中国存在着从能源富集区域和重化工基地分布区域向经济发达区域和产业结构不完整的欠发达区域的碳排放空间转移。上述结果表明, 人均碳足迹高的经济发达省份应承担较大的减排责任, 能源富集区域和重化工基地分布区域有相当一部分的碳排放是为沿海发达省份和产业结构不完整的欠发达省份提供电力、原材料等高碳产品所致, 减排责任的区域分解需要考虑碳排放空间转移的因素, 适当减轻能源富集区域和重化工基地分布区域的减排责任, 或使沿海发达省份向能源富集区域和重化工区域提供资金和技术上的扶持, 帮助这些区域提高能源利用效率, 减少碳排放。
[22] 孙建卫, 赵荣钦, 黄贤金, . 2010.

1995-2005年中国碳排放核算及其因素分解研究

[J]. 自然资源学报, 25(8): 1284-1295.

https://doi.org/10.11849/zrzyxb.2010.08.006      Magsci      [本文引用: 1]      摘要

采用1995&mdash;2005年中国各行业的相关统计数据,基于IPCC温室气体清单方法,构建了碳排放核算的项目框架,对中国历年的碳排放进行了核算;并应用因素分解方法对中国历年来碳排放量和碳排放强度及其变化的因素进行了时间序列分析。结论如下:①中国碳排放总量呈先缓慢减少后快速增加的态势,2005年中国碳排放达22.02&times;10<sup>8</sup> t,比1995年增加了66%,由于林业的碳汇功能,2005年净碳排放量为19.05&times;10<sup>8</sup> t;②碳排放强度的变化量总体上表现为增长态势,2002年前碳排放强度逐年减小,2002年后碳排放强度变化量转为正值,其中技术进步是碳排放强度变化的主要因素;③GDP增长是碳排放总量增加的主要动力,技术进步因素是碳排放量降低的主导因素;④工业部门对碳排放总量和碳排放强度的变化起决定作用,因此工业部门是实现碳减排的关键。

[Sun J W, Zhao R Q, Huang X J, et al.2010.

Research on carbon emission estimation and factor decomposition of China from 1995 to 2005

[J]. Journal of Natural Resources, 25(8): 1284-1295.]

https://doi.org/10.11849/zrzyxb.2010.08.006      Magsci      [本文引用: 1]      摘要

采用1995&mdash;2005年中国各行业的相关统计数据,基于IPCC温室气体清单方法,构建了碳排放核算的项目框架,对中国历年的碳排放进行了核算;并应用因素分解方法对中国历年来碳排放量和碳排放强度及其变化的因素进行了时间序列分析。结论如下:①中国碳排放总量呈先缓慢减少后快速增加的态势,2005年中国碳排放达22.02&times;10<sup>8</sup> t,比1995年增加了66%,由于林业的碳汇功能,2005年净碳排放量为19.05&times;10<sup>8</sup> t;②碳排放强度的变化量总体上表现为增长态势,2002年前碳排放强度逐年减小,2002年后碳排放强度变化量转为正值,其中技术进步是碳排放强度变化的主要因素;③GDP增长是碳排放总量增加的主要动力,技术进步因素是碳排放量降低的主导因素;④工业部门对碳排放总量和碳排放强度的变化起决定作用,因此工业部门是实现碳减排的关键。
[23] 孙伟, 乌日汗. 2012.

长三角核心区碳收支平衡及其空间分异

[J]. 地理研究, 31(12): 2220-2228.

Magsci      [本文引用: 2]      摘要

人类活动带来土地利用覆被变化以及能源消耗加大对区域碳排放的影响, 成为关系区 域可持续发展的重要问题。本文在相关碳排放方法研究基础上, 采用物料衡算法计算人类呼 吸和化石能源消耗的释碳量, 采用植被生物量法计算区域陆地生态系统的固碳量, 据此综合 测度区域自身碳收支平衡能力, 并以长江三角洲核心区为例, 进一步研究了区域内部碳收支 平衡能力的空间分异问题。研究表明, 1995年以来随着人类活动强度的增加和陆地植被面积 减少, 长三角核心区的碳收支不平衡性不断加剧, 依靠自身陆地生态系统已无法实现平衡, 特别是在沿沪宁线地区和中心城市尤为明显。研究结果可为制定产业转型、土地利用、节能 减排等差别化区域政策提供依据。

[Sun W, Wurihan.2012.

Study on the balance of carbon budget and its spatial differentiation in Yangtze River Delta

[J]. Geographical Research, 31(12): 2220-2228.]

Magsci      [本文引用: 2]      摘要

人类活动带来土地利用覆被变化以及能源消耗加大对区域碳排放的影响, 成为关系区 域可持续发展的重要问题。本文在相关碳排放方法研究基础上, 采用物料衡算法计算人类呼 吸和化石能源消耗的释碳量, 采用植被生物量法计算区域陆地生态系统的固碳量, 据此综合 测度区域自身碳收支平衡能力, 并以长江三角洲核心区为例, 进一步研究了区域内部碳收支 平衡能力的空间分异问题。研究表明, 1995年以来随着人类活动强度的增加和陆地植被面积 减少, 长三角核心区的碳收支不平衡性不断加剧, 依靠自身陆地生态系统已无法实现平衡, 特别是在沿沪宁线地区和中心城市尤为明显。研究结果可为制定产业转型、土地利用、节能 减排等差别化区域政策提供依据。
[24] 孙秀丽. 2010.

安徽省“自然-经济”复合系统碳收支估算及其特征研究[D]

. 芜湖: 安徽师范大学.

[本文引用: 1]     

[Sun X L.2010.

The estimation of the complex system of nature and economy carbon budget in Anhui Province and study on the feature[D].

Wuhu, China: Anhui Normal University.]

[本文引用: 1]     

[25] 谭梦, 黄贤金, 钟太洋, . 2011.

土地整理对农田土壤碳含量的影响

[J]. 农业工程学报, 27(8): 324-329.

Magsci      摘要

土地整理对土壤的强扰动会影响土壤的碳循环平衡,为了研究土地整理对农田土壤碳含量的影响,通过间接采样和随机采样方法,采集了江苏3个土地整理区土地整理前后土样进行有机质测定,初步分析了不同土地整理区土地整理后的土壤碳含量变化及其变化差异原因。主要结论有:1)通过土地整理,3个土地整理区土壤碳含量都有得到提高。其中,苏南丹阳土地整理区碳质量分数提高了26.05%,碳密度提高23.87%,提高幅度最大,碳密度变化方向与碳含量变化具有一致性,但提高幅度低于碳含量。这与各整理区原有土质、土地整理工程施工方式、施工时间等因素密切相关。2)水田碳质量分数显著高于旱地碳质量分数,但是经过土地整理旱地碳含量提高幅度大于水田,水田在整理前后碳含量变化幅度不大。3)在土地整理项目实施前应制定适宜的土地整理规划,实施有利于土壤固碳的土地整理工程。

[Tan M, Huang X J, Zhong T Y, et al.2011.

Impacts of land consolidation on soil organic carbon content

[J]. Transactions of the Chinese Society of Agricultural Engineering, 27(8): 324-329.]

Magsci      摘要

土地整理对土壤的强扰动会影响土壤的碳循环平衡,为了研究土地整理对农田土壤碳含量的影响,通过间接采样和随机采样方法,采集了江苏3个土地整理区土地整理前后土样进行有机质测定,初步分析了不同土地整理区土地整理后的土壤碳含量变化及其变化差异原因。主要结论有:1)通过土地整理,3个土地整理区土壤碳含量都有得到提高。其中,苏南丹阳土地整理区碳质量分数提高了26.05%,碳密度提高23.87%,提高幅度最大,碳密度变化方向与碳含量变化具有一致性,但提高幅度低于碳含量。这与各整理区原有土质、土地整理工程施工方式、施工时间等因素密切相关。2)水田碳质量分数显著高于旱地碳质量分数,但是经过土地整理旱地碳含量提高幅度大于水田,水田在整理前后碳含量变化幅度不大。3)在土地整理项目实施前应制定适宜的土地整理规划,实施有利于土壤固碳的土地整理工程。
[26] 汤洁, 毛子龙, 王晨野, . 2009.

基于碳平衡的区域土地利用结构优化: 以吉林省通榆县为例

[J]. 资源科学, 31(1): 130-135.

Magsci      摘要

土地利用/覆被变化对陆地生态系统碳循环有着显著影响。基于实地采集的土样测试数据和1989年、2000年、2004年8月份的陆地卫星TM遥感影像数据,采用生态系统类型法对吉林省通榆县旱田、水田、林地、草地、水域、城镇用地、沙地、盐碱地、湿地等11种陆地生态系统有机碳储量进行了估算,分析了土地利用/覆被变化对碳储量的影响;并采用线性规划方法优化土地利用结构,以实现土地利用结构变化下的陆地生态系统的碳平衡。结果表明,在以草地退化、土地沙化和盐碱化为主要特征的土地利用变化中,1989年~2000年研究区陆地生态系统的有机碳储量减少387.70×10<sup>4</sup>t,2000年以后进行的退耕还林、退耕还草等生态建设使有机碳储量增加69.70×10<sup>4</sup>t。应用线性规划模型获得的土地利用方案可以满足研究区对各类土地的需求,并预测2020年有机碳储量可达到4729.70×10<sup>4</sup>t。

[Tang J, Mao Z L, Wang C Y, et al.2009.

Regional land use structure optimization based on carbon balance: A case study in Tongyu County, Jilin Province

[J]. Resources Science, 31(1): 130-135.]

Magsci      摘要

土地利用/覆被变化对陆地生态系统碳循环有着显著影响。基于实地采集的土样测试数据和1989年、2000年、2004年8月份的陆地卫星TM遥感影像数据,采用生态系统类型法对吉林省通榆县旱田、水田、林地、草地、水域、城镇用地、沙地、盐碱地、湿地等11种陆地生态系统有机碳储量进行了估算,分析了土地利用/覆被变化对碳储量的影响;并采用线性规划方法优化土地利用结构,以实现土地利用结构变化下的陆地生态系统的碳平衡。结果表明,在以草地退化、土地沙化和盐碱化为主要特征的土地利用变化中,1989年~2000年研究区陆地生态系统的有机碳储量减少387.70×10<sup>4</sup>t,2000年以后进行的退耕还林、退耕还草等生态建设使有机碳储量增加69.70×10<sup>4</sup>t。应用线性规划模型获得的土地利用方案可以满足研究区对各类土地的需求,并预测2020年有机碳储量可达到4729.70×10<sup>4</sup>t。
[27] 唐志鹏, 刘卫东, 公丕萍. 2014.

出口对中国区域碳排放影响的空间效应测度: 基于1997-2007年区域间投入产出表的实证分析

[J]. 地理学报, 69(10): 1403-1413.

https://doi.org/10.11821/dlxb201410001      URL      Magsci      摘要

基于投入产出分析理论,本文改进了测度出口引致区域碳排放直接、间接、溢出和反馈四种空间效应公式,并将测度经济发展的溢出和反馈理念扩展到出口对区域间碳排放双向影响的研究中.研究结果显示,1997-2007 年全国实际出口引致8 区域碳排放的直接效应均有所下降,除了北部沿海区域和西北区域,其他6 个区域的间接效应也均有所下降.大部分沿海地区出口引致碳排放的溢出效应较高,北部和东部沿海区域由于与内地地区经济联系密切所受到的反馈效应也较高,但南部沿海区域由于加工贸易比重较高,所受到反馈效应相对少一些,京津区域由于城市职能定位经济辐射有限,所受到的反馈效应最低.内陆地区由于长期以来作为沿海地区的能源资源供应地以及对国内市场的依赖,出口引致碳排放的反馈效应普遍较高,其中西北和中部区域较为明显.注重区域间横向联合减排以及适宜性的区域减排政策有助于全国整体减排目标的实现.

[Tang Z P, Liu W D, Gong P P.2014.

Measuring of Chinese regional carbon emission spatial effects induced by exports based on Chinese multi-regional input-output table during 1997-2007

[J]. Acta Geographica Sinica, 69(10): 1403-1413.]

https://doi.org/10.11821/dlxb201410001      URL      Magsci      摘要

基于投入产出分析理论,本文改进了测度出口引致区域碳排放直接、间接、溢出和反馈四种空间效应公式,并将测度经济发展的溢出和反馈理念扩展到出口对区域间碳排放双向影响的研究中.研究结果显示,1997-2007 年全国实际出口引致8 区域碳排放的直接效应均有所下降,除了北部沿海区域和西北区域,其他6 个区域的间接效应也均有所下降.大部分沿海地区出口引致碳排放的溢出效应较高,北部和东部沿海区域由于与内地地区经济联系密切所受到的反馈效应也较高,但南部沿海区域由于加工贸易比重较高,所受到反馈效应相对少一些,京津区域由于城市职能定位经济辐射有限,所受到的反馈效应最低.内陆地区由于长期以来作为沿海地区的能源资源供应地以及对国内市场的依赖,出口引致碳排放的反馈效应普遍较高,其中西北和中部区域较为明显.注重区域间横向联合减排以及适宜性的区域减排政策有助于全国整体减排目标的实现.
[28] 王海鲲, 张荣荣, 毕军. 2011.

中国城市碳排放核算研究: 以无锡市为例

[J]. 中国环境科学, 31(6): 1029-1038.

Magsci      [本文引用: 1]      摘要

为分析城市温室气体减排潜力、比较不同城市的碳排放水平提供基本方法和数据,将城市温室气体排放源分成工业能源、交通能源、居民生活能源、商业能源、工业过程和废物等6个单元,建立了一套针对城市的温室气体排放核算方法体系,并以无锡市为例,对我国城市碳排放特征进行了探索.结果显示,无锡市工业能源单元碳排放量占全社会温室气体排放量的比例最大,为68%~71%;其次为工业过程单元和交通单元,分别为13%~19%和6%~10%.城市碳排放总量在2004~2008年间增长迅速,人均碳排放量和单位GDP碳排放量均高于世界水平.

[Wang H K, Zhang R R, Bi J.2011.

Carbon accounting for Chinese cities: A case of Wuxi City

[J]. China Environmental Science, 31(6): 1029-1038.]

Magsci      [本文引用: 1]      摘要

为分析城市温室气体减排潜力、比较不同城市的碳排放水平提供基本方法和数据,将城市温室气体排放源分成工业能源、交通能源、居民生活能源、商业能源、工业过程和废物等6个单元,建立了一套针对城市的温室气体排放核算方法体系,并以无锡市为例,对我国城市碳排放特征进行了探索.结果显示,无锡市工业能源单元碳排放量占全社会温室气体排放量的比例最大,为68%~71%;其次为工业过程单元和交通单元,分别为13%~19%和6%~10%.城市碳排放总量在2004~2008年间增长迅速,人均碳排放量和单位GDP碳排放量均高于世界水平.
[29] 王渊刚, 罗格平, 赵树斌, . 2014.

新疆耕地变化对区域碳平衡的影响

[J]. 地理学报, 69(1): 110-120.

https://doi.org/10.11821/dlxb201401011      Magsci      [本文引用: 1]      摘要

基于“Bookkeeping”模型,对1975-2005 年期间新疆耕地变化对区域碳平衡的影响进行了分析。荒漠土地开垦和耕地转移是新疆耕地变化的两种主要方式,1975-2005 年这两种耕地变化方式使新疆碳储量增加了20.6 Tg C,其中土地开垦使区域碳储量增加了51.8 Tg C,而耕地转移则向大气排放了31.2 Tg C。在1975-1985 年期间,新疆耕地大规模转移,区域碳储量的变化趋势受耕地转移的影响较大;1985 年后随新疆土地开垦规模的增加,碳储量变化趋势主要受土地开垦影响。30 年间,新疆碳储量增加主要是由草地开垦为耕地引起,而耕地转移为草地是新疆碳储量减少的主要原因。新疆地区进行合理的水土开发活动有利于区域碳固定,且长期的耕作管理活动会进一步增强耕地的碳汇功能。

[Wang Y G, Luo G P, Zhao S B, et al.2014.

Effects of arable land change on regional carbon balance in Xinjiang

[J]. Acta Geographica Sinica, 69(1): 110-120.]

https://doi.org/10.11821/dlxb201401011      Magsci      [本文引用: 1]      摘要

基于“Bookkeeping”模型,对1975-2005 年期间新疆耕地变化对区域碳平衡的影响进行了分析。荒漠土地开垦和耕地转移是新疆耕地变化的两种主要方式,1975-2005 年这两种耕地变化方式使新疆碳储量增加了20.6 Tg C,其中土地开垦使区域碳储量增加了51.8 Tg C,而耕地转移则向大气排放了31.2 Tg C。在1975-1985 年期间,新疆耕地大规模转移,区域碳储量的变化趋势受耕地转移的影响较大;1985 年后随新疆土地开垦规模的增加,碳储量变化趋势主要受土地开垦影响。30 年间,新疆碳储量增加主要是由草地开垦为耕地引起,而耕地转移为草地是新疆碳储量减少的主要原因。新疆地区进行合理的水土开发活动有利于区域碳固定,且长期的耕作管理活动会进一步增强耕地的碳汇功能。
[30] 王祖华, 刘红梅, 关庆伟, . 2011.

南京城市森林生态系统的碳储量和碳密度

[J]. 南京林业大学学报: 自然科学版, 35(4): 18-22.

https://doi.org/10.3969/j.issn.1000-2006.2011.04.004      URL      [本文引用: 1]      摘要

基于第6次森林资源二类清查数 据,运用生物量-蓄积量方程及土壤调查数据计算了南京市森林生态系统碳储量和碳密度。结果表明:南京市森林生态系统碳储量为3.098 Tg。其中,植被层和土壤层碳储量分别为1.357 Tg和1.741 Tg。碳储量的主要特点表现为城区大于城郊区(p0.05);不同林龄从大到小排序为:中龄林、幼龄林、近熟林、成熟林、过熟林,仅中熟林与过熟林之间差 异显著(p0.05);不同林型从大到小排序为:针叶林、阔叶林、针阔混交林,且针叶林与针阔混交林之间差异显著(p0.05);人工林碳储量显著大于天 然林(p0.05)。森林生态系统碳密度为38.69 Mg/hm2。其中,植被层和土壤层碳密度分别为16.92 Mg/hm2和21.77Mg/hm2,除了街道林分的碳密度明显低于其他3个功能区外(p0.05),不同林型、林龄和起源林分之间的碳密度均无显著差 异(p0.05)。

[Wang Z H, Liu H M, Guan Q W, et al.2011.

Carbon storage and density of urban forest ecosystems in Nanjing

[J]. Journal of Nanjing Forestry University: Natural Science Edition, 35(4): 18-22.]

https://doi.org/10.3969/j.issn.1000-2006.2011.04.004      URL      [本文引用: 1]      摘要

基于第6次森林资源二类清查数 据,运用生物量-蓄积量方程及土壤调查数据计算了南京市森林生态系统碳储量和碳密度。结果表明:南京市森林生态系统碳储量为3.098 Tg。其中,植被层和土壤层碳储量分别为1.357 Tg和1.741 Tg。碳储量的主要特点表现为城区大于城郊区(p0.05);不同林龄从大到小排序为:中龄林、幼龄林、近熟林、成熟林、过熟林,仅中熟林与过熟林之间差 异显著(p0.05);不同林型从大到小排序为:针叶林、阔叶林、针阔混交林,且针叶林与针阔混交林之间差异显著(p0.05);人工林碳储量显著大于天 然林(p0.05)。森林生态系统碳密度为38.69 Mg/hm2。其中,植被层和土壤层碳密度分别为16.92 Mg/hm2和21.77Mg/hm2,除了街道林分的碳密度明显低于其他3个功能区外(p0.05),不同林型、林龄和起源林分之间的碳密度均无显著差 异(p0.05)。
[31] 肖慧娟, 匡耀求, 黄宁生, . 2006.

工业化高速发展时期广州市的碳收支变化初步研究

[J]. 生态环境, 15(6): 1209-1215.

https://doi.org/10.3969/j.issn.1674-5906.2006.06.017      URL      [本文引用: 2]      摘要

为了了解我国发达城市在工业化 高速发展进程中CO2的收支状况,以广州市为研究对象,首次估算了其从1990年到2003年每年的净固碳量和释碳量,并分析了其变化趋势。研究结果表 明,这13年间广州市的净固碳量与总释碳量年均增长率分别为0.93%与7.16%;到2003年,其净固碳量为2.57Mt,而其总释碳量已达到 22.79Mt,其中约70%的释碳量源于化石燃料的燃烧。工业化高速发展时期也是释碳量日益高于净固碳量的时期,两者之间差距的逐步加大,已经使得广州 市目前的碳收支状况发展到了极不平衡的程度。而逐年递增的人口和以化石燃料为主的能源消费是造成广州市碳收支严重失衡的主要原因。

[Xiao H J, Kuang Y Q, Huang N S, et al.2006.

Variation of the carbon budget in Guangzhou during its rapid industrialization course

[J]. Ecology and Environment, 15(6): 1209-1215.]

https://doi.org/10.3969/j.issn.1674-5906.2006.06.017      URL      [本文引用: 2]      摘要

为了了解我国发达城市在工业化 高速发展进程中CO2的收支状况,以广州市为研究对象,首次估算了其从1990年到2003年每年的净固碳量和释碳量,并分析了其变化趋势。研究结果表 明,这13年间广州市的净固碳量与总释碳量年均增长率分别为0.93%与7.16%;到2003年,其净固碳量为2.57Mt,而其总释碳量已达到 22.79Mt,其中约70%的释碳量源于化石燃料的燃烧。工业化高速发展时期也是释碳量日益高于净固碳量的时期,两者之间差距的逐步加大,已经使得广州 市目前的碳收支状况发展到了极不平衡的程度。而逐年递增的人口和以化石燃料为主的能源消费是造成广州市碳收支严重失衡的主要原因。
[32] 谢士晨, 陈长虹, 李莉, . 2009.

上海市能源消费CO2排放清单与碳流通图

[J]. 中国环境科学, 29(11): 1215-1220.

Magsci      摘要

基于上海市能源统计数据,参照IPCC(2006)方法,测算了上海市能源CO2排放清单,并绘制了2007年上海市碳流通图.结果表明,上海市能源相关的CO2排放总量从1995年的1.10亿t增长到2007年的2.01亿t,期间年均增长率为5.0%.其中“交通”对应的CO2排放量增长最为迅速,年均增长率达15.1%;而“热电厂”的CO2排放量增幅逐渐变缓,其原因为近年上海市外来电力比重增大.2007年“热电厂”、“工业与建筑业”、“交通”、“商业”、“居民生活”与“农业”各部分CO2排放分担率分别为35.4%、34.4%、23.8%、4.0%、2.0%、0.4%.由2007年上海市碳流通图可见,15.6%的煤炭直接由终端使用,这不利于能源效率的提高与污染物的减排;成品油存在较多的交叉流通,若能够减少不必要的流通,不但能够缓解成品油的运输,还能够减少其在转运过程中的输配损失.

[Xie S C, Chen C H, Li L, et al.2009.

The energy related carbon dioxide emission inventory and carbon flow chart in Shanghai City

[J]. China Environmental Science, 29(11): 1215-1220.]

Magsci      摘要

基于上海市能源统计数据,参照IPCC(2006)方法,测算了上海市能源CO2排放清单,并绘制了2007年上海市碳流通图.结果表明,上海市能源相关的CO2排放总量从1995年的1.10亿t增长到2007年的2.01亿t,期间年均增长率为5.0%.其中“交通”对应的CO2排放量增长最为迅速,年均增长率达15.1%;而“热电厂”的CO2排放量增幅逐渐变缓,其原因为近年上海市外来电力比重增大.2007年“热电厂”、“工业与建筑业”、“交通”、“商业”、“居民生活”与“农业”各部分CO2排放分担率分别为35.4%、34.4%、23.8%、4.0%、2.0%、0.4%.由2007年上海市碳流通图可见,15.6%的煤炭直接由终端使用,这不利于能源效率的提高与污染物的减排;成品油存在较多的交叉流通,若能够减少不必要的流通,不但能够缓解成品油的运输,还能够减少其在转运过程中的输配损失.
[33] 姚亮, 刘晶茹. 2010.

中国八大区域间碳排放转移研究

[J]. 中国人口&amp;#x000b7;资源与环境, 20(12): 16-19.

URL      [本文引用: 2]     

[Yao L, Liu J R.2010.

Transfer of carbon emissions between China&amp;#x02019;s eight major regions

[J]. China Population, Resources and Environment, 20(12): 16-19.]

URL      [本文引用: 2]     

[34] 叶笃正, 陈泮勤. 1992. 中国的全球变化预研究: 第二部分分报告[M]. 北京: 地震出版社.

[本文引用: 1]     

[Ye D Z, Chen P Q.1992. Study on prediction of global change in China: The second part[M]. Beijing, China: Earthquake Press.]

[本文引用: 1]     

[35] 游和远, 吴次芳. 2010.

土地利用的碳排放效率及其低碳优化: 基于能源消耗的视角

[J]. 自然资源学报, 25(11): 1875-1886.

https://doi.org/10.11849/zrzyxb.2010.11.007      Magsci      [本文引用: 1]      摘要

碳排放效率可以弥补碳排放总量等指标对碳排放作为成本对期望产出作用考虑不足的弱点。研究以土地利用中能源消耗产生的碳排放为基础,基于投入导向的CCR与BCC模型测算土地利用碳排放的总效率、技术效率、规模效率与规模报酬。研究结果表明:30个省份中仅内蒙古、福建、广西、青海土地利用碳排放总效率有效;技术效率与规模效率的效率值及其分布与土地利用特征存在联系,规模效率有效地区分布远小于技术有效;规模效率有效省份与规模报酬不变省份存在不一致,改善土地利用碳排放规模效率需要考虑地区规模报酬所处阶段。因此对26个碳排放非DEA有效省份的土地利用从投入与产出进行低碳优化,并给出投入冗余度与产出不足率。最后针对低碳优化结果,设计包含土地利用能源投入控制以及基于土地资源配置的产出优化的土地利用低碳排放对策,以实现碳排放效率有效。

[You H Y, Wu C F.2010.

Carbon emission efficiency and low carbon optimization of land use: Based on the perspective of energy consumption

[J]. Journal of Natural Resources, 25(11): 1875-1886.]

https://doi.org/10.11849/zrzyxb.2010.11.007      Magsci      [本文引用: 1]      摘要

碳排放效率可以弥补碳排放总量等指标对碳排放作为成本对期望产出作用考虑不足的弱点。研究以土地利用中能源消耗产生的碳排放为基础,基于投入导向的CCR与BCC模型测算土地利用碳排放的总效率、技术效率、规模效率与规模报酬。研究结果表明:30个省份中仅内蒙古、福建、广西、青海土地利用碳排放总效率有效;技术效率与规模效率的效率值及其分布与土地利用特征存在联系,规模效率有效地区分布远小于技术有效;规模效率有效省份与规模报酬不变省份存在不一致,改善土地利用碳排放规模效率需要考虑地区规模报酬所处阶段。因此对26个碳排放非DEA有效省份的土地利用从投入与产出进行低碳优化,并给出投入冗余度与产出不足率。最后针对低碳优化结果,设计包含土地利用能源投入控制以及基于土地资源配置的产出优化的土地利用低碳排放对策,以实现碳排放效率有效。
[36] 余德贵, 吴群. 2011.

基于碳排放约束的土地利用结构优化模型研究及其应用

[J]. 长江流域资源与环境, 20(8): 911-917.

Magsci      [本文引用: 1]      摘要

<p>以经济快速发展区域(县域)的土地利用生态经济系统为研究对象,利用系统科学相关分析方法,结合区域土地利用的经济、生态和社会功能变化趋势,在分析区域未来社会经济科学发展、碳排放目标与土地利用结构变化关系的基础上,研究了土地利用结构调控的CO2当量指数、经济效益指数及其目标函数,通过集成Markov模型和结构优化方法,建立了区域土地利用结构的低碳优化动态调控模型(LUSCC)及其求解方法。最后以江苏泰兴市为例进行了分析验证,综合考虑该区域的发展战略和政策实施情况,获得3种不同碳排放目标调控程度的土地利用优化结构及其调控方法,研究表明,建立的基于碳排放约束的动态优化调控模型,能够满足土地资源配置效率的最大化及其可持续利用要求,为探索区域未来低碳型土地利用结构的优化方法提供参考。</p>

[Yu D G, Wu Q.2011.

Application of the model of land used structure optimization based on low-carbon limited

[J]. Resources and Environment in the Yangtze Basin, 20(8): 911-917.]

Magsci      [本文引用: 1]      摘要

<p>以经济快速发展区域(县域)的土地利用生态经济系统为研究对象,利用系统科学相关分析方法,结合区域土地利用的经济、生态和社会功能变化趋势,在分析区域未来社会经济科学发展、碳排放目标与土地利用结构变化关系的基础上,研究了土地利用结构调控的CO2当量指数、经济效益指数及其目标函数,通过集成Markov模型和结构优化方法,建立了区域土地利用结构的低碳优化动态调控模型(LUSCC)及其求解方法。最后以江苏泰兴市为例进行了分析验证,综合考虑该区域的发展战略和政策实施情况,获得3种不同碳排放目标调控程度的土地利用优化结构及其调控方法,研究表明,建立的基于碳排放约束的动态优化调控模型,能够满足土地资源配置效率的最大化及其可持续利用要求,为探索区域未来低碳型土地利用结构的优化方法提供参考。</p>
[37] 张璐, 王静, 施润和. 2015.

2000-2010年东北三省碳源汇时空动态遥感研究

[J]. 华东师范大学学报: 自然科学版, (4): 164-173.

URL      [本文引用: 1]     

[Zhang L, Wang J, Shi R H.2015.

Temporal-spatial variations of carbon sink/source in Northeast China from 2000 to 2010

[J]. Journal of East China Normal University: Natural Science, (4): 164-173.]

URL      [本文引用: 1]     

[38] 张善峰, 宋彦, 李昌峰, . 2015.

杭州市土地覆被变化与碳收支空间分异测度

[J]. 城市问题, (6): 46-53.

URL      摘要

以杭州市为例,采用物料衡算法测算了城市人类活动的释碳量,采用植被生物量法测算了城市遗留自然生态系统的固碳量。结果显示:杭州市及各区土地覆被呈现建设用地对耕地的显著捕获且上升速度较快;杭州市整体的碳收支水平处于赤字状态、收支比逐年降低,城市系统内部无法实现碳收支平衡;耕地与林地是杭州市两个最重要的固碳子系统。杭州市及各区的固碳损失主要是由于耕地向建设用地转化造成的。杭州市各区均处于碳赤字状态,缺口呈上升态势(上城区除外),在空间上表现为“东—中—西”到“东—西—中”递减;碳赤字密度呈增长态势(下城区除外),在空间上表现为“中—东—西”递减;杭州市及各区的经济发展对碳环境压力步入下行通道。

[Zhang S F, Song Y, Li C F, et al.2015.

Land cover change and the spatial differentiation of carbon budget in Hangzhou

[J]. Urban Problems, (6): 46-53.]

URL      摘要

以杭州市为例,采用物料衡算法测算了城市人类活动的释碳量,采用植被生物量法测算了城市遗留自然生态系统的固碳量。结果显示:杭州市及各区土地覆被呈现建设用地对耕地的显著捕获且上升速度较快;杭州市整体的碳收支水平处于赤字状态、收支比逐年降低,城市系统内部无法实现碳收支平衡;耕地与林地是杭州市两个最重要的固碳子系统。杭州市及各区的固碳损失主要是由于耕地向建设用地转化造成的。杭州市各区均处于碳赤字状态,缺口呈上升态势(上城区除外),在空间上表现为“东—中—西”到“东—西—中”递减;碳赤字密度呈增长态势(下城区除外),在空间上表现为“中—东—西”递减;杭州市及各区的经济发展对碳环境压力步入下行通道。
[39] 赵敏. 2010.

上海碳源碳汇结构变化及其驱动机制研究[D]

. 上海: 华东师范大学.

[本文引用: 3]     

[Zhao M.2010.

Structural changes and driving mechanism of carbon sources and sinks in Shanghai[D].

Shanghai, China: East China Normal University.]

[本文引用: 3]     

[40] 赵荣钦. 2012. 城市系统碳循环及土地调控研究[M]. 南京: 南京大学出版社.

[本文引用: 1]     

[Zhao R Q.2012. Carbon cycle of urban system and its regulation through land use control[M]. Nanjing, China: Nanjing University Press.]

[本文引用: 1]     

[41] 赵荣钦, 黄贤金. 2013.

城市系统碳循环: 特征、机理与理论框架

[J]. 生态学报, 33(2): 358-366.

https://doi.org/10.5846/stxb201111121721      Magsci      [本文引用: 1]      摘要

城市是地表受人类活动影响最深刻的区域,城市系统碳循环在全球和区域碳过程中具有重要的地位和作用。提出了城市"自然-社会"二元碳循环的概念,探讨了城市系统碳循环的一般特征;分析了城市系统碳循环的内部机理,主要包括:城市系统碳储量和碳输入/输出通量的主要过程和途径、城市系统碳储量、碳通量和碳流通的生命周期分析、城市系统碳输入和碳输出的类型划分等;提出了基于系统层次划分和碳流通过程的城市系统碳循环的研究框架,分析了城市自然系统和城市经济系统的主要碳流通过程和环节,构建了城市系统碳循环研究的思路和理论框架;最后提出了城市系统碳循环领域未来的研究重点。

[Zhao R Q, Huang X J.2013.

Carbon cycle of urban system: Characteristics, mechanism and theoretical framework

[J]. Acta Ecologica Sinica, 33(2): 358-366.]

https://doi.org/10.5846/stxb201111121721      Magsci      [本文引用: 1]      摘要

城市是地表受人类活动影响最深刻的区域,城市系统碳循环在全球和区域碳过程中具有重要的地位和作用。提出了城市"自然-社会"二元碳循环的概念,探讨了城市系统碳循环的一般特征;分析了城市系统碳循环的内部机理,主要包括:城市系统碳储量和碳输入/输出通量的主要过程和途径、城市系统碳储量、碳通量和碳流通的生命周期分析、城市系统碳输入和碳输出的类型划分等;提出了基于系统层次划分和碳流通过程的城市系统碳循环的研究框架,分析了城市自然系统和城市经济系统的主要碳流通过程和环节,构建了城市系统碳循环研究的思路和理论框架;最后提出了城市系统碳循环领域未来的研究重点。
[42] 赵荣钦, 黄贤金, 高珊, . 2013.

江苏省碳排放清单测算及减排潜力分析

[J]. 地域研究与开发, 32(2): 109-115.

Magsci      [本文引用: 4]      摘要

基于省域层面,构建了碳排放清单的核算框架和计算方法。以江苏省为例,对2000—2010年的碳排放清单进行了全面测算,并对江苏省碳减排潜力进行了情景分析。江苏省碳排放总量从2000年的8 005.29万t上升到2010年的20 888.88万t,涨幅为160%,其中工业能源消费碳排放占86%;江苏省单位GDP碳排放强度呈波动下降趋势,从2000年的0.94 t/万元下降到2010年的0.71 t/万元,降幅达24%;人均碳排放则呈逐年增长态势,从1.09 t/a增长到2.69 t/a;在低碳情景下,江苏省2015年和2020年碳减排量分别为4 930.75万t和16 101.13万t,碳减排比例分别达15%和29%;在江苏省“十二五”低碳经济规划中,应重点加强工业能源与交通能源消耗、垃圾焚烧与填埋等部门的碳减排力度,切实降低区域碳排放强度,为低碳经济发展提供技术支撑和示范效应。

[Zhao R Q, Huang X J, Gao S, et al.2013.

Regional carbon emission inventory estmimation and reduction potential analysis in Jiangsu Province

[J]. Areal Research and Development, 32(2): 109-115.]

Magsci      [本文引用: 4]      摘要

基于省域层面,构建了碳排放清单的核算框架和计算方法。以江苏省为例,对2000—2010年的碳排放清单进行了全面测算,并对江苏省碳减排潜力进行了情景分析。江苏省碳排放总量从2000年的8 005.29万t上升到2010年的20 888.88万t,涨幅为160%,其中工业能源消费碳排放占86%;江苏省单位GDP碳排放强度呈波动下降趋势,从2000年的0.94 t/万元下降到2010年的0.71 t/万元,降幅达24%;人均碳排放则呈逐年增长态势,从1.09 t/a增长到2.69 t/a;在低碳情景下,江苏省2015年和2020年碳减排量分别为4 930.75万t和16 101.13万t,碳减排比例分别达15%和29%;在江苏省“十二五”低碳经济规划中,应重点加强工业能源与交通能源消耗、垃圾焚烧与填埋等部门的碳减排力度,切实降低区域碳排放强度,为低碳经济发展提供技术支撑和示范效应。
[43] 赵荣钦, 黄贤金, 彭补拙. 2012.

南京城市系统碳循环与碳平衡分析

[J]. 地理学报, 67(6): 758-770.

Magsci      摘要

城市是人类能源活动和碳排放的集中地,开展城市系统碳循环研究有助于深入了解城市在区域碳循环过程中的地位和作用。本文集成了城市碳储量和碳通量的核算方法,并以南京市为例开展了城市系统碳循环与碳平衡的实证研究。结论如下:① 南京市城市碳储量呈缓慢上升趋势,2009 年为6937 万t,其中自然碳储量占88%,且总量基本保持稳定;人为碳储量(特别是城市绿地和建筑物碳库) 呈大幅增长趋势;② 垂直碳输入通量以植物光合作用和水域碳吸收为主,历年来基本稳定;水平碳输入通量大幅增长,2009 年为3043 万t,其中能源和木材碳输入呈增长趋势,而食物碳输入则呈下降趋势;③ 垂直碳输出通量呈增长趋势,2009年为3295 万t,其中化石能源碳排放占近80%,自然过程仅占6%;水平碳输出通量以能源制品、水产品和含碳废弃物为主,其总量呈明显下降趋势;④ 南京市历年城市碳输出均高于碳输入,且两者的差额呈现扩大趋势。总体而言,“隐流碳和加工需求碳”的比重有所下降,说明碳的利用率有所提升;⑤ 南京市碳补偿率明显下降,这表明自然生态系统的碳吸收能力不足以补偿人为活动的碳排放,城市碳循环压力在不断加大。

[Zhao R Q, Huang X J, Peng B Z.2012.

Research on carbon cycle and carbon balance of Nanjing urban system

[J]. Acta Geographica Sinica, 67(6): 758-770.]

Magsci      摘要

城市是人类能源活动和碳排放的集中地,开展城市系统碳循环研究有助于深入了解城市在区域碳循环过程中的地位和作用。本文集成了城市碳储量和碳通量的核算方法,并以南京市为例开展了城市系统碳循环与碳平衡的实证研究。结论如下:① 南京市城市碳储量呈缓慢上升趋势,2009 年为6937 万t,其中自然碳储量占88%,且总量基本保持稳定;人为碳储量(特别是城市绿地和建筑物碳库) 呈大幅增长趋势;② 垂直碳输入通量以植物光合作用和水域碳吸收为主,历年来基本稳定;水平碳输入通量大幅增长,2009 年为3043 万t,其中能源和木材碳输入呈增长趋势,而食物碳输入则呈下降趋势;③ 垂直碳输出通量呈增长趋势,2009年为3295 万t,其中化石能源碳排放占近80%,自然过程仅占6%;水平碳输出通量以能源制品、水产品和含碳废弃物为主,其总量呈明显下降趋势;④ 南京市历年城市碳输出均高于碳输入,且两者的差额呈现扩大趋势。总体而言,“隐流碳和加工需求碳”的比重有所下降,说明碳的利用率有所提升;⑤ 南京市碳补偿率明显下降,这表明自然生态系统的碳吸收能力不足以补偿人为活动的碳排放,城市碳循环压力在不断加大。
[44] 赵荣钦, 黄贤金, 钟太洋. 2010.

中国不同产业空间的碳排放强度与碳足迹分析

[J]. 地理学报, 65(9): 1048-1057.

Magsci      [本文引用: 1]      摘要

<p>采用2007 年中国各省区不同产业各种能源消费等数据,通过构建能源消费碳排放和碳足迹模型,对各省区化石能源和农村生物质能源的碳排放量进行了估算;建立了不同产业空间与能源消费碳排放的对应关系,将产业活动空间分为农业空间、生活与工商业空间、交通产业空间、渔业与水利业空间、其他产业空间等五大类;对各省区不同产业空间碳排放强度和碳足迹进行了对比分析。主要结论如下:(1) 中国2007 年能源消费碳排放总量为1.65 GtC,其中化石能源碳排放占89%;(2) 2007 年中国产业空间碳排放强度为1.98 t/hm<sup>2</sup>,其中,生活及工商业空间、交通产业空间的碳排放强度较高,分别为55.16 t/hm<sup>2</sup>和49.65 t/hm<sup>2</sup>;(3) 2007 年中国产业空间碳足迹为522.34&times;10<sup>6</sup> hm<sup>2</sup>,由此造成的生态赤字为28.69&times;10<sup>6</sup> hm<sup>2</sup>,这说明我国的生产性土地面积不足以补偿产业空间的碳排放,补偿率约为94.5%。各地区碳足迹差异明显,不少省份甚至存在生态盈余。总体而言,从产业活动空间的角度来看,中国目前的碳赤字不大;(4) 全国产业空间单位面积碳足迹为0.63 hm<sup>2</sup>/hm<sup>2</sup>,其中生活与工商业空间的碳足迹最大,为17.5 hm<sup>2</sup>/hm<sup>2</sup>。不同产业空间单位面积碳足迹大都呈现从东到西逐渐下降的趋势。</p>

[Zhao R Q, Huang X J, Zhong T Y.2010.

Research on carbon emission intensity and carbon footprint of different industrial spaces in China

[J]. Acta Geographica Sinica, 65(9): 1048-1057.]

Magsci      [本文引用: 1]      摘要

<p>采用2007 年中国各省区不同产业各种能源消费等数据,通过构建能源消费碳排放和碳足迹模型,对各省区化石能源和农村生物质能源的碳排放量进行了估算;建立了不同产业空间与能源消费碳排放的对应关系,将产业活动空间分为农业空间、生活与工商业空间、交通产业空间、渔业与水利业空间、其他产业空间等五大类;对各省区不同产业空间碳排放强度和碳足迹进行了对比分析。主要结论如下:(1) 中国2007 年能源消费碳排放总量为1.65 GtC,其中化石能源碳排放占89%;(2) 2007 年中国产业空间碳排放强度为1.98 t/hm<sup>2</sup>,其中,生活及工商业空间、交通产业空间的碳排放强度较高,分别为55.16 t/hm<sup>2</sup>和49.65 t/hm<sup>2</sup>;(3) 2007 年中国产业空间碳足迹为522.34&times;10<sup>6</sup> hm<sup>2</sup>,由此造成的生态赤字为28.69&times;10<sup>6</sup> hm<sup>2</sup>,这说明我国的生产性土地面积不足以补偿产业空间的碳排放,补偿率约为94.5%。各地区碳足迹差异明显,不少省份甚至存在生态盈余。总体而言,从产业活动空间的角度来看,中国目前的碳赤字不大;(4) 全国产业空间单位面积碳足迹为0.63 hm<sup>2</sup>/hm<sup>2</sup>,其中生活与工商业空间的碳足迹最大,为17.5 hm<sup>2</sup>/hm<sup>2</sup>。不同产业空间单位面积碳足迹大都呈现从东到西逐渐下降的趋势。</p>
[45] 赵荣钦, 黄贤金, 钟太洋, . 2012.

南京市不同土地利用方式的碳储量与碳通量

[J]. 水土保持学报, 26(6): 164-170.

URL      摘要

通过集成区域碳储量和碳通量的 核算方法,建立不同土地利用方式与碳过程的对应关系,并以南京市为例探讨不同土地利用方式的碳储量和碳通量状况。主要结论为:(1)南京市2009年总碳 储量为6 936.79万t,其中,居民点及工矿用地碳储量占总碳储量的38%,单位面积碳储量最大(184.00t/hm2)的为居民点及工矿用地,这主要归因于 城市住宅建筑木材和城市绿化碳储量的大幅增加,以及建筑容积率提高带来的城市单位建筑面积碳蓄积量的增加;(2)南京市碳输入和碳输出通量最大的地类均为 居民点及工矿用地,2009年分别达到3 126.95万t和3 283.20万t,两者的强度分别为218.65t/hm2和229.58t/hm2,这表明,作为人为活动强烈集中的地类,居民点及工矿用地与外界的碳 交换远远高于其他地类;(3)南京市人为碳排放强度增幅明显,2009年达到46.63t/hm2,其中居民点及工矿用地高达200.52t/hm2,这 说明南京市建成区碳代谢强度明显提高,碳循环压力逐渐增大。

[Zhao R Q, Huang X J, Zhong T Y, et al.2012.

Carbon storage and fluxes of different land use types in Nanjing

[J]. Journal of Soil and Water Conservation, 26(6): 164-170.]

URL      摘要

通过集成区域碳储量和碳通量的 核算方法,建立不同土地利用方式与碳过程的对应关系,并以南京市为例探讨不同土地利用方式的碳储量和碳通量状况。主要结论为:(1)南京市2009年总碳 储量为6 936.79万t,其中,居民点及工矿用地碳储量占总碳储量的38%,单位面积碳储量最大(184.00t/hm2)的为居民点及工矿用地,这主要归因于 城市住宅建筑木材和城市绿化碳储量的大幅增加,以及建筑容积率提高带来的城市单位建筑面积碳蓄积量的增加;(2)南京市碳输入和碳输出通量最大的地类均为 居民点及工矿用地,2009年分别达到3 126.95万t和3 283.20万t,两者的强度分别为218.65t/hm2和229.58t/hm2,这表明,作为人为活动强烈集中的地类,居民点及工矿用地与外界的碳 交换远远高于其他地类;(3)南京市人为碳排放强度增幅明显,2009年达到46.63t/hm2,其中居民点及工矿用地高达200.52t/hm2,这 说明南京市建成区碳代谢强度明显提高,碳循环压力逐渐增大。
[46] 赵荣钦, 张帅, 黄贤金, . 2014.

中原经济区县域碳收支空间分异及碳平衡分区

[J]. 地理学报, 69(10): 1425-1437.

https://doi.org/10.11821/dlxb201410003      Magsci      [本文引用: 5]      摘要

区域碳收支核算是当前全球气候变化与碳排放研究的核心内容之一.开展县域空间碳收支与碳平衡研究不仅有助于从理论上构建县级尺度碳效率和碳生态压力评估的方法,而且对于县域空间碳补偿及低碳发展策略的制定也具有重要的现实意义.本文采用2009 年中原经济区县域单元的各种统计数据及土地利用数据,对县域空间的碳收支状况进行了核算分析,并在碳平衡分区的基础上提出了中原经济区主体功能区优化的思路和政策建议.主要结论:① 中原经济区2009 年碳吸收和碳排放总量分别为1.3 亿t 和2.1 亿t.碳排放量基本呈现&ldquo;从市辖区到周边县(市) 逐渐降低&rdquo;的规律;碳吸收量的分布具有&ldquo;西北低、东南高&rdquo;的特点;②县域空间碳补偿率的分布具有显著的区域差异,人均GDP 越高的地区,其碳补偿率往往越低;反之,碳补偿率越高;③ 由于县域单元碳源/汇具有较大的空间差异,中原经济区县域空间的碳排放经济贡献率和碳生态容量存在明显不匹配现象;④ 基于碳平衡分析,本文将中原经济区县域空间划分为碳强度控制区、碳收支平衡区、碳汇功能区、碳总量控制区及低碳优化区等5 类区域,并在此基础上提出了中原经济区主体功能区优化的思路及低碳发展策略.

[Zhao R Q, Zhang S, Huang X J, et al.2014.

Spatial variation of carbon budget and carbon balance zoning of Central Plains Economic Region at county-level

[J]. Acta Geographica Sinica, 69(10): 1425-1437.]

https://doi.org/10.11821/dlxb201410003      Magsci      [本文引用: 5]      摘要

区域碳收支核算是当前全球气候变化与碳排放研究的核心内容之一.开展县域空间碳收支与碳平衡研究不仅有助于从理论上构建县级尺度碳效率和碳生态压力评估的方法,而且对于县域空间碳补偿及低碳发展策略的制定也具有重要的现实意义.本文采用2009 年中原经济区县域单元的各种统计数据及土地利用数据,对县域空间的碳收支状况进行了核算分析,并在碳平衡分区的基础上提出了中原经济区主体功能区优化的思路和政策建议.主要结论:① 中原经济区2009 年碳吸收和碳排放总量分别为1.3 亿t 和2.1 亿t.碳排放量基本呈现&ldquo;从市辖区到周边县(市) 逐渐降低&rdquo;的规律;碳吸收量的分布具有&ldquo;西北低、东南高&rdquo;的特点;②县域空间碳补偿率的分布具有显著的区域差异,人均GDP 越高的地区,其碳补偿率往往越低;反之,碳补偿率越高;③ 由于县域单元碳源/汇具有较大的空间差异,中原经济区县域空间的碳排放经济贡献率和碳生态容量存在明显不匹配现象;④ 基于碳平衡分析,本文将中原经济区县域空间划分为碳强度控制区、碳收支平衡区、碳汇功能区、碳总量控制区及低碳优化区等5 类区域,并在此基础上提出了中原经济区主体功能区优化的思路及低碳发展策略.
[47] 周年兴, 黄震方, 梁艳艳. 2013.

庐山风景区碳源、碳汇的测度及均衡

[J]. 生态学报, 33(13): 4134-4145.

https://doi.org/10.5846/stxb201212021727      Magsci      [本文引用: 1]      摘要

旅游目的地系统碳源、碳汇的计算与分析,不仅是旅游业节能减排政策制定的重要依据,也是旅游与环境相互关系研究的一个新的科学命题。以庐山风景区为例,计算并分析了2010年的碳源及碳汇。结果表明:(1)2010年庐山风景区包括本地居民和旅游者的总碳排放为108 697 t。其中,本地居民占碳排放总量的19.52%,旅游者占碳排放总量的80.48%。在旅游者碳排放中,旅游交通碳排放占50.24%,旅游住宿碳排放占38.04%,旅游食物消费碳排放占10.65%,旅游活动碳排放仅占1.07%;(2)2010年庐山风景区内陆地生态系统碳吸收为9 447 t;(3)从碳源、碳汇均衡角度看,庐山陆地生态系统的固碳量吸收了区内碳排放的23.47%。但由于旅游者的区际流动和旅游业的产业关联性强,陆地生态系统的碳吸收仅占区内和区外碳排放总量的8.69%,旅游业使庐山成为一个显著的碳源。

[Zhou N X, Huang Z F, Liang Y Y.2013.

Carbon sources and storage sinks in scenic tourist areas: A Mount Lushan case study

[J]. Acta Ecologica Sinica, 33(13): 4134-4145.]

https://doi.org/10.5846/stxb201212021727      Magsci      [本文引用: 1]      摘要

旅游目的地系统碳源、碳汇的计算与分析,不仅是旅游业节能减排政策制定的重要依据,也是旅游与环境相互关系研究的一个新的科学命题。以庐山风景区为例,计算并分析了2010年的碳源及碳汇。结果表明:(1)2010年庐山风景区包括本地居民和旅游者的总碳排放为108 697 t。其中,本地居民占碳排放总量的19.52%,旅游者占碳排放总量的80.48%。在旅游者碳排放中,旅游交通碳排放占50.24%,旅游住宿碳排放占38.04%,旅游食物消费碳排放占10.65%,旅游活动碳排放仅占1.07%;(2)2010年庐山风景区内陆地生态系统碳吸收为9 447 t;(3)从碳源、碳汇均衡角度看,庐山陆地生态系统的固碳量吸收了区内碳排放的23.47%。但由于旅游者的区际流动和旅游业的产业关联性强,陆地生态系统的碳吸收仅占区内和区外碳排放总量的8.69%,旅游业使庐山成为一个显著的碳源。
[48] 朱文泉, 潘耀忠, 阳小琼, . 2007.

气候变化对中国陆地植被净初级生产力的影响分析

[J]. 科学通报, 52(21): 2535-2541.

Magsci      摘要

近来的气候变化对陆地植被净初级生产力(NPP)产生了综合影响. 通过对1982~1999年的中国陆地植被NPP及相应的气候数据进行系统分析, 结果表明: (ⅰ) 中国近20 a来的气候变化使温度、降水、光照均朝着有利于植物生长的方向发展, 其胁迫作用有所减弱: 受水分限制的西北地区, 其NPP的增长趋势平均为1.42%·a<SUP>-1</SUP>; 受温度制约的东北、华北和青藏高原地区, NPP增长趋势平均为1.46%·a<SUP>-1</SUP>; 华中、华东、华南受光照制约的地方, NPP增长趋势平均为0.99%·a<SUP>-1</SUP>. (ⅱ) 18 a来, 中国陆地植被NPP总量增加了0.76 Pg C (24.2%), 其中由气候变化约导致NPP增加0.36 Pg C (11.5%), 其他因素(气候-植被相互作用、土地利用变化、造林等)约导致NPP增加0.40 Pg C (12.4%). (ⅲ) 与全球情况相比, 中国陆地植被NPP对气候变化的响应存在区域差异, 在20世纪80年代后期的几次厄尔尼诺事件中, 全球NPP均明显下降, 而中国的NPP因受季风影响, 情况复杂.

[Zhu W Q, Pan Y Z, Yang X Q, et al.2007.

Impact of climate change on net primary productivity of Chinese terrestrial vegetation

[J]. Chinese Science Bulletin, 52(23): 3253-3260.]

Magsci      摘要

近来的气候变化对陆地植被净初级生产力(NPP)产生了综合影响. 通过对1982~1999年的中国陆地植被NPP及相应的气候数据进行系统分析, 结果表明: (ⅰ) 中国近20 a来的气候变化使温度、降水、光照均朝着有利于植物生长的方向发展, 其胁迫作用有所减弱: 受水分限制的西北地区, 其NPP的增长趋势平均为1.42%·a<SUP>-1</SUP>; 受温度制约的东北、华北和青藏高原地区, NPP增长趋势平均为1.46%·a<SUP>-1</SUP>; 华中、华东、华南受光照制约的地方, NPP增长趋势平均为0.99%·a<SUP>-1</SUP>. (ⅱ) 18 a来, 中国陆地植被NPP总量增加了0.76 Pg C (24.2%), 其中由气候变化约导致NPP增加0.36 Pg C (11.5%), 其他因素(气候-植被相互作用、土地利用变化、造林等)约导致NPP增加0.40 Pg C (12.4%). (ⅲ) 与全球情况相比, 中国陆地植被NPP对气候变化的响应存在区域差异, 在20世纪80年代后期的几次厄尔尼诺事件中, 全球NPP均明显下降, 而中国的NPP因受季风影响, 情况复杂.
[49] Turner D P, Winjum J K, Kolchugina T P, . 1997.

国家级地面碳收支的生物与人类因素剖析

[J]. AMBIO: 人类环境杂志, 26(4): 216-222.

URL      摘要

正如联合国气候变化框架公约所 要求的,在国家级尺度上确定温室气体净排放量的工作必须包括工业排放量及与地面相联系的净通量。在这一研究中,为了比较三个国家的CO_2净通量以及确定 其关键性的研究领域,在一个共同的框架背景下对现有的土地利用状况、土地覆盖的变化速率、森林的收获水平以及天然火的蔓延等方面的数据进行了分析。在前苏 联(FSU)及美国本土,有林地的林分龄级分布与采伐速率往往是地面碳通量的最重要因素;而在巴西,土地覆盖变化的速率以及弃荒的农地或牧场上次生森林植 被的再生长则是其关键因素。在对前苏联和美国的分析中,最不确定的部分与木材残留物和土壤有机质的累积速率有关,也与获得的统计资料中缺乏龄级数据有关。 在巴西,容易遭受破坏的森林初级生物量以及恢复的次生森林面积被认为是最需要研究的问题。如果对碳收支的估算对决策团体有用的话,则有必要进一步发展数据 库并对测定碳通量的方法给予密切关注。

[Turner D P, Winjum J K, Kolchugina T P, et al.1997.

Analysis of biological and human factors of national terrestrial carbon budget

[J]. AMBIO: A Journal of the Human Environment, 26(4): 216-222.]

URL      摘要

正如联合国气候变化框架公约所 要求的,在国家级尺度上确定温室气体净排放量的工作必须包括工业排放量及与地面相联系的净通量。在这一研究中,为了比较三个国家的CO_2净通量以及确定 其关键性的研究领域,在一个共同的框架背景下对现有的土地利用状况、土地覆盖的变化速率、森林的收获水平以及天然火的蔓延等方面的数据进行了分析。在前苏 联(FSU)及美国本土,有林地的林分龄级分布与采伐速率往往是地面碳通量的最重要因素;而在巴西,土地覆盖变化的速率以及弃荒的农地或牧场上次生森林植 被的再生长则是其关键因素。在对前苏联和美国的分析中,最不确定的部分与木材残留物和土壤有机质的累积速率有关,也与获得的统计资料中缺乏龄级数据有关。 在巴西,容易遭受破坏的森林初级生物量以及恢复的次生森林面积被认为是最需要研究的问题。如果对碳收支的估算对决策团体有用的话,则有必要进一步发展数据 库并对测定碳通量的方法给予密切关注。
[50] Adom F, Maes A, Workman C, et al.2012.

Regional carbon footprint analysis of dairy feeds for milk production in the USA

[J]. The International Journal of Life Cycle Assessment, 17(5): 520-534.

https://doi.org/10.1007/s11367-012-0386-y      URL      [本文引用: 1]      摘要

ABSTRACT A carbon footprint analysis was conducted for cultivation and harvesting of feed rations used for the production of dairy milk in the U.S. The goal is to determine the greenhouse (GHG) emissions on a basis of 1 kg of ration harvested or produced (kg CO2eq. / kg of feed rations) in the U.S on a regional basis and to make recommendations to reduce GHG emissions from the crop production chain. Commonly used dairy feedstuffs in the U.S. such as soybeans, corn grain/silage alfalfa, etc were identified based on a recent literature review and information from dairy farm surveys. By dividing the U.S into five dairy regions the following input data for the cultivation and harvesting of dairy rations were collected for each region; crop production data, energy input, soil amendments, and crop protection chemicals. Life cycle inventory (LCI) data for these inputs were mainly collected from the USDA National Agricultural Statistical Service on a state-by-state basis as well as from state extension services forage crop budget estimates. Apart from consulting other LCA studies and published articles and reports, this cradle-to-farm gate GHG impact analysis was conducted utilizing the EcoInvent unit processes in SimaPro version 7.1. The final GHG results (kg CO2 eq. / kg of feed ration) varied regionally depending on a number of factors such as the lime and fertilizer application rates. The average national U.S. GHG results of the main crops are as follows: corn grain (0. 331), corn silage (0.071), dry distiller grains (0.818), wet distiller grains (0.268), oats (0.736), soybeans (0.344), soybean meal (0.406), winter wheat (0.395), alfalfa hay (0.147) and forage mix (0.137). Dairy production region 2 (the southeast) generally showed a relatively high level of carbon footprint for most crops grown locally and this can be attributed mostly to the higher application rates of both synthetic fertilizers and lime. The highest contributor to carbon footprint for most regions (apart from soybean) was identified to be the application of inorganic N fertilizer. Finally, efficient transfer of knowledge to farmers with regards to Fertilizer Best Management Practices such as precision application of farm nutrients as well as efficient management of crop residues can contribute significantly to reduce the regional carbon footprints.
[51] Baldocchi D D.2003.

Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future

[J]. Global Change Biology, 9(4): 479-492.

https://doi.org/10.1046/j.1365-2486.2003.00629.x      URL      摘要

Abstract The eddy covariance technique ascertains the exchange rate of COacross the interface between the atmosphere and a plant canopy by measuring the covariance between fluctuations in vertical wind velocity and COmixing ratio. Two decades ago, the method was employed to study COexchange of agricultural crops under ideal conditions during short field campaigns. During the past decade the eddy covariance method has emerged as an important tool for evaluating fluxes of carbon dioxide between terrestrial ecosystems and the atmosphere over the course of a year, and more. At present, the method is being applied in a nearly continuous mode to study carbon dioxide and water vapor exchange at over a hundred and eighty field sites, worldwide. The objective of this review is to assess the eddy covariance method as it is being applied by the global change community on increasingly longer time scales and over less than ideal surfaces. The eddy covariance method is most accurate when the atmospheric conditions (wind, temperature, humidity, CO) are steady, the underlying vegetation is homogeneous and it is situated on flat terrain for an extended distance upwind. When the eddy covariance method is applied over natural and complex landscapes or during atmospheric conditions that vary with time, the quantification of COexchange between the biosphere and atmosphere must include measurements of atmospheric storage, flux divergence and advection. Averaging COflux measurements over long periods (days to year) reduces random sampling error to relatively small values. Unfortunately, data gaps are inevitable when constructing long data records. Data gaps are generally filled with values produced from statistical and empirical models to produce daily and annual sums of COexchange. Filling data gaps with empirical estimates do not introduce significant bias errors because the empirical algorithms are derived from large statistical populations. On the other hand, flux measurement errors can be biased at night when winds are light and intermittent. Nighttime bias errors tend to produce an underestimate in the measurement of ecosystem respiration. Despite the sources of errors associated with long-term eddy flux measurements, many investigators are producing defensible estimates of annual carbon exchange. When measurements come from nearly ideal sites the error bound on the net annual exchange of COis less than 卤50鈥塯鈥塁鈥塵鈥墆r. Additional confidence in long-term measurements is growing because investigators are producing values of net ecosystem productivity that are converging with independent values produced by measuring changes in biomass and soil carbon, as long as the biomass inventory studies are conducted over multiple years.
[52] Broecker W S, Takahashi T, Simpson H J, et al.1979.

Fate of fossil fuel carbon dioxide and the global carbon budget

[J]. Science, 206: 409-418.

https://doi.org/10.1126/science.206.4417.409      URL      PMID: 17809356      [本文引用: 1]      摘要

The fate of carbon dioxide released into the atmosphere depends on the exchange rates of carbon between the atmosphere and three major carbon reservoirs, namely, the oceans, shallow-water sediments, and the terrestrial biosphere. Various assumptions and models used to estimate the global carbon budget for the last 20 years are reviewed and evaluated. Several versions of recent atmosphere-ocean models appear to give reliable and mutually consistent estimates for carbon dioxide uptake by the oceans. On the other hand, there is no compelling evidence which establishes that the terrestrial biomass has decreased at a rate comparable to that of combustion over the last two decades, as has been recently claimed.
[53] Bullock S H Escoto-Rodr&amp;#x000ed;guez M, Smith S V,et al.2011.

Carbon flux of an urban system in M&amp;#x000e9;xico

[J]. Journal of Industrial Ecology, 15(4): 512-526.

https://doi.org/10.1111/j.1530-9290.2011.00341.x      Magsci      摘要

We estimated vertical and lateral fluxes of carbon for the isolated coastal city of Ensenada (Baja California, Mexico). In 2005, the city had a resident population of about 261,000, with tourism adding about 1.5%; it occupied an area of roughly 68 square kilometers (km(2)). Carbon (C) export was estimated at 400 gigagrams of carbon per year (Gg C/yr); notable sources to the atmosphere were combustion engines (42%), cement production (38%), water heating and cooking (7%), and human respiration (6%). Solid waste (6%) was exported for burial, but efflux to the bay was minor (about 0.1 Gg C/yr). Local deposition was limited to sewage sludge (about 2 Gg C/yr), asphalt, and extremely low primary production. Remote fluxes driven by local demand could be estimated only for electricity (61 Gg C/yr), but local flux from cement and other industrial production might be attributed largely to external demand. The urban system output to the atmosphere was about 6.4 kilograms of carbon per square meter per year (kg C/m(2)/yr), or roughly 23.6 kg/m(2)/yr in CO(2) equivalence. By comparison, net ecosystem productivity in the surrounding watershed has been estimated at 0.04 kg C/m(2)/yr, so the city's atmospheric output of C might be balanced by productivity over about 11,000 km(2) of the surrounding ecosystems. Between 2000 and 2005, C output increased faster than population growth, particularly from engine fuels.
[54]

Carbon Dioxide Information Analysis Center. 2014. Land-use and ecosystems

[EB/OL]. 2014-08-08[2015-11-01] .

URL     

[55] Chang N B, Qi C, Yang Y J.2012.

Optimal expansion of a drinking water infrastructure system with respect to carbon footprint, cost-effectiveness and water demand

[J]. Journal of Environmental Management, 110: 194-206.

https://doi.org/10.1016/j.jenvman.2012.06.004      URL      PMID: 22789655      [本文引用: 1]      摘要

Urban water infrastructure expansion requires careful long-term planning to reduce the risk from climate change during periods of both economic boom and recession. As part of the adaptation management strategies, capacity expansion in concert with other management alternatives responding to the population dynamics, ecological conservation, and water management policies should be systematically examined to balance the water supply and demand temporally and spatially with different scales. To mitigate the climate change impact, this practical implementation often requires a multiobjective decision analysis that introduces economic efficiencies and carbon-footprint matrices simultaneously. The optimal expansion strategies for a typical water infrastructure system in South Florida demonstrate the essence of the new philosophy. Within our case study, the multiobjective modeling framework uniquely features an integrated evaluation of transboundary surface and groundwater resources and quantitatively assesses the interdependencies among drinking water supply, wastewater reuse, and irrigation water permit transfer as the management options expand throughout varying dimensions. With the aid of a multistage planning methodology over the partitioned time horizon, such a systems analysis has resulted in a full-scale screening and sequencing of multiple competing objectives across a suite of management strategies. These strategies that prioritize 20 options provide a possible expansion schedule over the next 20 years that improve water infrastructure resilience and at low life-cycle costs. The proposed method is transformative to other applications of similar water infrastructure systems elsewhere in the world.
[56] Chen S Q, Chen B.2012.

Network environ perspective for urban metabolism and carbon emissions: A case study of Vienna, Austria

[J]. Environmental Science &amp;#x00026; Technology, 46(8): 4498-4506.

https://doi.org/10.1021/es204662k      URL      PMID: 22424579      [本文引用: 1]      摘要

Not Available
[57] Christen A, Coops N, Kellett R, et al.2010.

A LiDAR-based urban metabolism approach to neighbourhood scale energy and carbon emissions modelling[R]. Vancouver, Canada: University of

British Columbia.

[本文引用: 2]     

[58] Churkina G.2008.

Modeling the carbon cycle of urban systems

[J]. Ecological Modelling, 216(2): 107-113.

https://doi.org/10.1016/j.ecolmodel.2008.03.006      URL      [本文引用: 2]      摘要

Although more than 80% of carbon dioxide emissions originate in urban areas, the role of human settlements in the biosphere evolution and in global carbon cycling remains largely neglected. Understanding the relationships between the form and pattern of urban development and the carbon cycle is however crucial for estimating future trajectories of greenhouse gas concentrations in the atmosphere and can facilitate mitigation of climate change. In this paper I review state-of-the-art in modeling of urban carbon cycle. I start with the properties of urban ecosystems from the ecosystem theory point of view. Then I discuss key elements of an urban system and to which degree they are represented in the existing models. In conclusions I highlight necessity of including biophysical as well as human related carbon fluxes in an urban carbon cycle model and necessity of collecting relevant data.
[59] Churkina G, Brown D G, Keoleian G.2010.

Carbon stored in human settlements: The conterminous United States

[J]. Global Change Biology, 16(1): 135-143.

https://doi.org/10.1111/j.1365-2486.2009.02002.x      URL      摘要

Abstract Urban areas are home to more than half of the world's people, responsible for >70% of anthropogenic release of carbon dioxide and 76% of wood used for industrial purposes. By 2050 the proportion of the urban population is expected to increase to 70% worldwide. Despite fast rates of change and potential value for mitigation of carbon dioxide emissions, the organic carbon storage in human settlements has not been well quantified. Here, we show that human settlements can store as much carbon per unit area (23–42kgCm 612 urban areas and 7–16kgCm 612 exurban areas) as tropical forests, which have the highest carbon density of natural ecosystems (4–25kgCm 612 ). By the year 2000 carbon storage attributed to human settlements of the conterminous United States was 18Pg of carbon or 10% of its total land carbon storage. Sixty-four percent of this carbon was attributed to soil, 20% to vegetation, 11% to landfills, and 5% to buildings. To offset rising urban emissions of carbon, regional and national governments should consider how to protect or even to increase carbon storage of human-dominated landscapes. Rigorous studies addressing carbon budgets of human settlements and vulnerability of their carbon storage are needed.
[60] Escobedo F, Varela S, Zhao M, et al.2010.

Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities

[J]. Environmental Science &amp;#x00026; Policy, 13(5): 362-372.

https://doi.org/10.1016/j.envsci.2010.03.009      URL      [本文引用: 1]      摘要

ABSTRACT Urban forest management and policies have been promoted as a tool to mitigate carbon dioxide (CO2) emissions. This study used existing CO2 reduction measures from subtropical Miami-Dade and Gainesville, USA and modeled carbon storage and sequestration by trees to analyze policies that use urban forests to offset carbon emissions. Field data were analyzed, modeled, and spatially analyzed to compare CO2 sequestered by managing urban forests to equivalent amounts of CO2 emitted in both urban areas. Urban forests in Gainesville have greater tree density, store more carbon and present lower per-tree sequestration rates than Miami-Dade as a result of environmental conditions and urbanization patterns. Areas characterized by natural pine-oak forests, mangroves, and stands of highly invasive trees were most apt at sequestering CO2. Results indicate that urban tree sequestration offsets CO2 emissions and, relative to total city-wide emissions, is moderately effective at 3.4 percent and 1.8 percent in Gainesville and Miami-Dade, respectively. Moreover, converting available non-treed areas into urban forests would not increase overall CO2 emission reductions substantially. Current CO2 sequestration by trees was comparable to implemented CO2 reduction policies. However, long-term objectives, multiple ecosystem services, costs, community needs, and preservation of existing forests should be considered when managing trees for climate change mitigation and other ecosystem services.
[61] Falkowski P, Scholes R J, Boyle E, et al.2000.

The global carbon cycle: A test of our knowledge of earth as a system

[J]. Science, 290: 291-296.

https://doi.org/10.1126/science.290.5490.291      URL      PMID: 11030643      [本文引用: 1]      摘要

Motivated by the rapid increase in atmospheric CO2 due to human activities since the Industrial Revolution, several international scientific research programs have analyzed the role of individual components of the Earth system in the global carbon cycle. Our knowledge of the carbon cycle within the oceans, terrestrial ecosystems, and the atmosphere is sufficiently extensive to permit us to conclude that although natural processes can potentially slow the rate of increase in atmospheric CO2, there is no natural "savior" waiting to assimilate all the anthropogenically produced CO2 in the coming century. Our knowledge is insufficient to describe the interactions between the components of the Earth system and the relationship between the carbon cycle and other biogeochemical and climatological processes. Overcoming this limitation requires a systems approach.
[62] Fan J, Guo X M, Marinova D, et al.2012.

Embedded carbon footprint of Chinese urban households: Structure and changes

[J]. Journal of Cleaner Production, 33: 50-59.

https://doi.org/10.1016/j.jclepro.2012.05.018      URL      [本文引用: 1]      摘要

This paper explores the embedded carbon footprint (ECF) of Chinese urban households associated with activities, such as food, personal transport, communications, education, recreation, health and hygiene. It uses an input–output model for carbon emissions and 2003–2009 urban household data. The results show that the total ECF emission intensity increases when an individual's consumption is higher than 10,000 Yuan (06). Structural changes are further observed with consumption expenditure above 0610,000: food, clothing and other survival-oriented emissions intensities as well as education, health and development-oriented emissions intensities reduce; transport, recreation, housing and enjoyment-oriented emissions intensities increase or remain stable and the total emissions intensity increases. Currently per capita consumption expenditure of Chinese urban residents exceeds 0610,000 and as income continues to rise, China will remain on a high-carbon track. There is a need for better policies, management and behavioural change and the study provides some policy suggestions, including a carbon quota system to guide individual consumption.
[63] Fang J Y, Chen A P, Peng C H, et al.2001.

Changes in forest biomass carbon storage in China between 1949 and 1998

[J]. Science, 292: 2320-2322.

https://doi.org/10.1126/science.1058629      URL      PMID: 11423660      摘要

The location and mechanisms responsible for the carbon sink in northern mid-latitude are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.
[64] Filimonau V, Dickinson J, Robbins D, et al.2011.

Reviewing the carbon footprint analysis of hotels: Life Cycle Energy Analysis (LCEA) as a holistic method for carbon impact appraisal of tourist accommodation

[J]. Journal of Cleaner Production, 19(17-18): 1917-1930.

https://doi.org/10.1016/j.jclepro.2011.07.002      Magsci      [本文引用: 1]      摘要

This study discusses the potential for Life Cycle Assessment (LCA) to be utilized for the environmental assessment of tourism accommodation facilities, and their contribution to global carbon footprint. To demonstrate the viability of employing LCA in the hotel sector, its simplified derivative, Life Cycle Energy Analysis (LCEA), is applied to two tourism accommodation facilities in Poole, Dorset (UK) to quantify their CO(2) emissions. The results indicate that the reviewed hotels are less energy and carbon-intense than the tourism accommodation establishments reported in the literature. This may indirectly imply the continuous progress of hotel's energy efficiency over time. The implications of the current energy use practices in the reviewed hotels are discussed and suggestions are made on how to further improve the energy performance and therefore cut the carbon footprint. Recommendations for hotel management and policy-making are developed to reduce the energy and carbon intensity of the hotel industry. A method for energy and carbon footprint analysis of outsourced laundries and breakfast services is also proposed. (C) 2011 Elsevier Ltd. All rights reserved.
[65] Frank A B, Liebig M A, Hanson J D.2002.

Soil carbon dioxide fluxes in northern semiarid grasslands

[J]. Soil Biology and Biochemistry, 34(9): 1235-1241.

URL     

[66] Gadema Z, Oglethorpe D.2011.

The use and usefulness of carbon labelling food: A policy perspective from a survey of UK supermarket shoppers

[J]. Food Policy, 36(6): 815-822.

https://doi.org/10.1016/j.foodpol.2011.08.001      Magsci      [本文引用: 1]      摘要

Both the process of carbon footprinting and carbon labelling of food products are currently voluntary in the UK. Both processes derive from the UK's policy for sustainable development and in particular, the UK's Framework for Environmental Behaviours that strongly advocates a social marketing approach towards behavioural change. This paper examines whether carbon footprinting and labelling food products, borne from an overarching policy imperative to decarbonise food systems, is a tool that will actively facilitate consumers to make 'greener' purchasing decisions and whether this is a sensible way of trying to achieve to a low carbon future. We do so by drawing from a survey exploring purchasing habits and perceptions in relation to various sustainability credentials of food products and particularly 'carbon', using a combination of descriptive and cluster analysis. The data, from 428 UK supermarket shoppers, reveals that whilst consumer demand is relatively strong for carbon labels with a stated preference rate of 72%, confusion in interpreting and understanding labels is correspondingly high at a total of 89%, primarily as a result of poor communication and market proliferation. Three statistically distinct clusters were produced from the cluster analysis, representing taxonomies of consumers with quite different attitudes to carbon and other wider sustainability issues. Whilst the majority of consumers are likely to react positively to further carbon labelling of food products, this in itself is unlikely to drive much change in food systems. As such, the data imply that a concerted policy drive to decarbonise food systems via voluntary carbon footprinting and labelling policy initiatives is limited by a fragmented and haphazard market approach where retailers are being careful not to disaffect certain products by labelling others within the same category. Consumers may want to make choices based on the carbon footprint of products but do not feel empowered to do so and relying on consumer guilt is inappropriate. The paper concludes that the establishment of effective linkages between food policy and food market actors to drive a targeted and coherent carbon labelling policy is needed. This would provide consumers with the opportunity to make informed choices, especially within food product categories and negate the need for retailers to depend on the demand side of the supply chain to achieve carbon reduction targets. (C) 2011 Elsevier Ltd. All rights reserved.
[67] Hao Y, Su M R, Zhang L X, et al.2015.

Integrated accounting of urban carbon cycle in Guangyuan, a mountainous city of China: The impacts of earthquake and reconstruction

[J]. Journal of Cleaner Production, 103: 231-240.

URL     

[68] Houghton R A.1999.

The annual net flux of carbon to the atmosphere from changes in land use 1850-1990

[J]. Tellus B, 51(2): 298-313.

URL      [本文引用: 3]     

[69] Houghton R A.2007.

Balancing the global carbon budget

[J]. Annual Review of Earth and Planetary Sciences, 35(1): 313-347.

https://doi.org/10.1146/annurev.earth.35.031306.140057      URL      [本文引用: 2]      摘要

AbstractThe global carbon budget is, of course, balanced. The conservation of carbon and the first law of thermodynamics are intact. “Balancing the carbon budget” refers to the state of the science in evaluating the terms of the global carbon equation. The annual increases in the amount of carbon in the atmosphere, oceans, and land should balance the emissions of carbon from fossil fuels and deforestation. Balancing the carbon budget is not the real issue, however. The real issue is understanding the processes responsible for net sources and sinks of carbon. Such understanding should lead to more accurate predictions of future concentrations of CO2 and more accurate predictions of the rate and extent of climatic change. The recent past may be insufficient for prediction, however. Oceanic and terrestrial sinks that have lessened the rate of growth in atmospheric CO2 until now may diminish as feedbacks between the carbon cycle and climate become more prominent.
[70] Houghton R A, Davidson E A, Woodwell G M.1998.

Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance

[J]. Global Biogeochemical Cycles, 12(1): 25-34.

https://doi.org/10.1029/97GB02729      URL      [本文引用: 1]      摘要

Terrestrial ecosystems are thought to be a major sink for carbon at the present time. The endeavor to find this terrestrial sink and to determine the mechanisms responsible has dominated terrestrial research on the global carbon cycle for years. Some of the mechanisms advanced to explain the "missing sink" are also negative feedbacks to a global warming. Here we distinguish between mechanisms likely to act as feedbacks to a global warming and other mechanisms consistent with a terrestrial sink that are not feedbacks to a global warming. One of the postulated negative feedback mechanisms that also helps explain the current "missing sink" is based on the theory that carbon should accumulate in vegetation as a result of a warming-enhanced mineralization of nitrogen in soil organic matter. The theory assumes that mineralized N is neither retained in the soil (through reimmobilization by microbial biomass) nor lost from the ecosystem, but rather becomes available for plant growth. None of these assumptions is supported yet by field data. In contrast, trends across existing climatic gradients suggest that warmer temperatures will lead to a decrease in the C:N ratio of soils (i.e., the mineralized N remains in soil). Data pertaining to temporal variability in the global carbon balance are conflicting with respect to the question of whether increasing temperatures cause a release or storage of terrestrial carbon. The answer seems to depend in part on time scale. Most likely, multiple mechanisms, including some that release carbon and others that accumulate it, account for the present net accumulation of carbon on land. However, a positive feedback between temperature and the release of COto the atmosphere by terrestrial respiration seems likely to grow in importance and could change significantly the role that terrestrial ecosystems play in the global carbon balance.
[71] Houghton R A, Hackler J L.2003.

Sources and sinks of carbon from land-use change in China

[J]. Global Biogeochemical Cycles, 17(2): 1034.

https://doi.org/10.1029/2002GB001970      URL      [本文引用: 1]      摘要

Changes in land use contribute to the current terrestrial carbon sink in most regions of the northern midlatitudes but are poorly documented for China, the world's third largest country. We attempted to reconstruct the last 300 years of land-use change in China, emphasizing changes in the area of forests. Changes in the area of croplands were inadequate for reconstruction of forest loss because the long-term loss of forest area was more than twice the current area of croplands. We used historical information to reconstruct changes in forest area over time and the ecological literature to estimate the carbon stocks of the major natural ecosystems (vegetation and soil). We used a bookkeeping model to calculate the flux of carbon to or from living vegetation, dead vegetation, soils, and wood products under different types of land use. According to the data and assumptions, 180 (range: 80-200) 脳 10ha of forest were lost, and 17-33 PgC were released to the atmosphere between 1700 and 2000. About 25% of the loss was from soils. The accelerated clearing and logging of forests in northeastern and southwestern China led to emissions of carbon that reached peaks of 0.2-0.5 PgC yrfrom the late 1950s through the 1970s. Lower rates of deforestation since then, as well as expanding areas of tree plantations, reversed the net flux of carbon from a source to a sink during the 1990s.
[72] Houghton R A, Hackler J L, Lawrence K T.1999.

The U.S. carbon budget: Contributions from land-use change

[J]. Science, 285: 574-578.

URL     

[73] Houghton R A, House J I, Pongratz J, et al.2012.

Carbon emissions from land use and land-cover change

[J]. Biogeosciences, 9(12): 5125-5142.

[本文引用: 2]     

[74] IPCC.2006.

IPCC guidelines for national greenhouse gas inventories

[R]. Washington:IPCC.

[75] IPCC.2014.

Climate change 2014: Synthesis report: Summary for policymakers

[R]. Washington: IPCC.

[76] Jo H K.2002.

Impacts of urban greenspace on offsetting carbon emissions for middle Korea

[J]. Journal of Environmental Management, 64(2): 115-126.

https://doi.org/10.1006/jema.2001.0491      Magsci      [本文引用: 1]      摘要

<h2 class="secHeading" id="section_abstract">Abstract</h2><p id="">Carbon dioxide is an important greenhouse gas and a major agent of climate change. This study quantified carbon (C) emissions from energy consumption and C storage and uptake by greenspace for three cities in middle Korea: Chuncheon, Kangleung, and Seoul. Carbon emissions were estimated using C emission coefficients for fossil fuels consumed. Carbon storage and uptake by woody plants were computed applying biomass equations and radial growth rates. The soils in Chuncheon were cored to analyze organic C storage. Annual C emissions were 37&middot;0 t/ha/yr in Kangleung, 47&middot;2 t/ha/yr in Chuncheon, and 264&middot;9 t/ha/yr in Seoul. Mean C storage by woody plants ranged from 26&middot;0 to 60&middot;1 t/ha for natural lands within the study cities, and from 4&middot;7 to 7&middot;2 t/ha for urban lands (all land use types except natural and agricultural lands). Mean annual C uptake by woody plants ranged from 1&middot;60 to 3&middot;91 t/ha/yr for natural lands within the cities, and from 0&middot;53 to 0&middot;80 t/ha/yr for urban lands. There were no significant differences (95% confidence level) between the cities in C storage and uptake per ha for urban lands. Organic C storage in Chuncheon soils (to a depth of 60&#xA0;cm) averaged 31&middot;6 t/ha for natural lands and 24&middot;8 t/ha for urban lands. Woody plants stored an amount of C equivalent to 6&middot;0&ndash;59&middot;1% of total C emissions within the cities, and annually offset total C emissions by 0&middot;5&ndash;2&middot;2%. Carbon storage in soils was 1&middot;2 times greater than that by woody plants in Chuncheon. The C reduction benefits of woody plants were greater in Chuncheon and Kangleung, where areal distribution of natural lands was larger and the population density lower than in Seoul. Strategies to increase C storage and uptake by urban greenspace were explored.</p>
[77] Kang C Q, Zhou T R, Chen Q X, et al.2012.

Carbon emission flow in networks

[J]. Scientific Reports, 2: 479.

https://doi.org/10.1038/srep00479      URL      PMID: 22761988      [本文引用: 1]      摘要

As the human population increases and production expands, energy demand and anthropogenic carbon emission rates have been growing rapidly, and the need to decrease carbon emission levels has drawn increasing attention. The link between energy production and consumption has required the large-scale transport of energy within energy transmission networks. Within this energy flow, there is a virtual circulation of carbon emissions. To understand this circulation and account for the relationship between energy consumption and carbon emissions, this paper introduces the concept of ``carbon emission flow in networks'' and establishes a method to calculate carbon emission flow in networks. Using an actual analysis of China's energy pattern, the authors discuss the significance of this new concept, not only as a feasible approach but also as an innovative theoretical perspective.
[78] Koerner B, Klopatek J.2002.

Anthropogenic and natural CO2 emission sources in an arid urban environment

[J]. Environmental Pollution, 116(Sl): S45-S51.

URL      [本文引用: 1]     

[79] Le Qu&amp;#x000e9;r&amp;#x000e9; C, Andres R J, Boden T,et al.2013.

The global carbon budget 1959-2011

[J]. Earth System Science Data, 5(1): 165-185.

URL      [本文引用: 1]     

[80] Liu Z, Guan D B, Wei W, et al.2015.

Reduced carbon emission estimates from fossil fuel combustion and cement production in China

[J]. Nature, 524: 335-338.

https://doi.org/10.1038/nature14677      URL      PMID: 26289204      [本文引用: 1]      摘要

Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China1,172. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China?s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent1,173,174,5. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China?s carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000?2012 than the value reported by China?s national statistics6, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change7, and that emissions from China?s cement production are 45 per cent less than recent estimates1,174. Altogether, our revised estimate of China?s CO2emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories1,174,178. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China?s cumulative carbon emissions1,174. Our findings suggest that overestimation of China?s emissions in 2000?2013 may be larger than China?s estimated total forest sink in 1990?2007 (2.66 gigatonnes of carbon)917or China?s land carbon sink in 2000?2009 (2.6 gigatonnes of carbon)10.
[81] Machado G, Schaeffer R, Worrell E.2001.

Energy and carbon embodied in the international trade of Brazil: An input-output approach

[J]. Ecological Economics, 39(3): 409-424.

URL      [本文引用: 1]     

[82] Marchi M, J&amp;#x000f8;rgensen S E, Pulselli F M,et al.2012.

Modelling the carbon cycle of Siena Province (Tuscany, central Italy)

[J]. Ecological Modelling, 225: 40-60.

https://doi.org/10.1016/j.ecolmodel.2011.11.007      URL      摘要

Since carbon dioxide (CO) is the major greenhouse gas emitted by human activities, it is necessary to assess its sources and sinks, simulating the complex dynamics of COflows involved in the carbon balance. To understand the advantages of carbon models for the political and environmental management of a region, we model the carbon cycle of Siena Province, a fairly large area in Tuscany (central Italy). The model develops the socio-ecological processes that determine the anthropogenic emissions and removals of COfrom 2006 to 2016. We also include sources of the powerful greenhouse gas methane (CH), such as landfills, wastewater treatment, combustion of fossil fuels and livestock. We then estimate the carbon footprint of Siena Province and elaborate six scenarios of emission reduction. The dynamic model proposed in this paper provides a good quantitative estimation of variations in emissions of COand CHon a local scale, quantifying present and future sources and sinks of carbon in the study area. The scenarios of emission reduction are useful for assessing regional management in time. Economic aspects are not considered in the scenarios of emission reduction, because while the economy influences the choice of solutions it does not affect the model results. Siena Province therefore has an instrument for setting guidelines for good management of the resources and natural capital it administers; the model improves as it is updated year by year.
[83] Nowak D J.1993.

Atmospheric carbon reduction by urban trees

[J]. Journal of Environmental Management, 37(3): 207-217.

https://doi.org/10.1006/jema.1993.1017      URL      [本文引用: 1]      摘要

Trees, because they sequester atmospheric carbon through their growth process and conserve energy in urban areas, have been suggested as one means to combat increasing levels of atmospheric carbon. Analysis of the urban forest in Oakland, California (21% tree cover), reveals a tree carbon storage level of 110 metric tons/hectare. Trees in the area of the 1991 fire in Oakland stored approximately 14 500 metric tons of carbon, 10% of the total amount stored by Oakland's urban forest. National urban forest carbon storage in the United States (28% tree cover) is estimated at between 350 and 750 million metric tons. Establishment of 10 million urban trees annually over the next 10 years is estimated to sequester and offset the production of 363 million metric tons of carbon over the next 50 yearsess than 1% of the estimated carbon emissions in the United States over the same period. Advantages and limitations of managing urban trees to reduce atmospheric carbon are discussed.
[84] Pataki D E, Alig R J, Fung A S, et al.2006.

Urban ecosystems and the North American carbon cycle

[J]. Global Change Biology, 12(11): 2092-2102.

https://doi.org/10.1016/j.ijbiomac.2007.10.018      URL      [本文引用: 1]      摘要

Approximately 75-80% of the population of North America currently lives in urban areas as defined by national census bureaus, and urbanization is continuing to increase. Future trajectories of emissions are associated with a high degree of uncertainty; however, if the activities of urban residents and the rate of urban land conversion can be captured in urban systems models, plausible emissions scenarios from major cities may be generated. Integrated land use and transportation models that simulate energy use and traffic-related emissions are already in place in many North American cities. To these can be added a growing dataset of carbon gains and losses in vegetation and soils following urbanization, and a number of methods of validating urban carbon balance modeling, including top down atmospheric monitoring and urban 'metabolic' studies of whole ecosystem mass and energy flow. Here, we review the state of our understanding of urban areas as whole ecosystems with regard to carbon balance, including both drivers of emissions and carbon cycling in urban and soils. Interdisciplinary, whole-ecosystem studies of the socioeconomic and biophysical factors that influence urban carbon cycles in a range of cities may greatly contribute to improving scenarios of future carbon balance at both continental and global scales.
[85] Paul S, Bhattacharya R N.2004.

CO2 emission from energy use in India: A decomposition analysis

[J]. Energy Policy, 32(5): 585-593.

https://doi.org/10.1016/S0301-4215(02)00311-7      URL      Magsci      [本文引用: 1]      摘要

<h2 class="secHeading" id="section_abstract">Abstract</h2><p id="">This paper aims at identifying the factors that have influenced the changes in the level of energy-related CO<sub>2</sub> emissions. By means of decomposition method the observed changes are analysed in terms of four factors: pollution coefficient, energy intensity, structural changes and economic activity. The study refers to the major economic sectors of India for the period 1980&ndash;1996. The results show economic growth has the largest positive effect in CO<sub>2</sub> emissions changes in all the major economic sectors. Emissions of CO<sub>2</sub> in industrial and transport sectors show a decreasing trend due to improved energy efficiency and fuel switching. However, the reducing effect of the pollution coefficient and energy intensity on CO<sub>2</sub> emissions in agricultural sector is almost nil. The energy intensity varies over a wider range and has had a greater impact on energy-induced CO<sub>2</sub> emissions than the pollution coefficient.</p>
[86] Sung C Y, Cho W, Hong S H.2015.

Estimating the annual carbon budget of a weekend tourist resort in a temperate secondary forest in Korea

[J]. Urban Forestry &amp;#x00026; Urban Greening, 14(2): 413-419.

https://doi.org/10.1016/j.ufug.2015.04.008      URL      [本文引用: 1]      摘要

In this paper, we estimated the amount of carbon sequestered by and emitted from tourism activities related to the Oak Valley resort, a ski and golf resort located in a temperate secondary forest in the City of Wonju, Korea, in 2006. Annual carbon sequestration by a forest in the resort was estimated using discrete-return light detection and ranging (LiDAR) remote sensing data, and annual carbon emissions from the resort tourism were estimated using visitor survey and energy consumption data. The total annual carbon emissions from the resort tourism were estimated to be 845302Mg02C02yr 611 (9.202kg02C02yr 611 02visitor 611 ). Electricity consumption by resort facilities, fuel consumption for the transportation of resort visitors, and liquefied petroleum gas (LPG) and liquefied natural gas (LNG) consumptions for heating were the major sources of carbon emissions. The forest in the resort sequestered 670302Mg02C02yr 611 (7.302kg02C02yr 611 02visitor 611 ), which offset 79.3% of the total carbon emissions from the resort tourism activities. The resort tourism had the net carbon deficit of 175002Mg02C02yr 611 (1.902kg02C02yr 611 02visitor 611 ). From these results, we drew several policy implications for low carbon sustainable tourism.
[87] Svirejeva-Hopkins A, Schellnhuber H J.2006.

Modelling carbon dynamics from urban land conversion: Fundamental model of city in relation to a local carbon cycle

[J]. Carbon Balance and Management, 1: 8.

https://doi.org/10.1186/1750-0680-1-8      URL      摘要

In order to fulfil this task, we first develop a fundamental model of urban space, since the type of land cover within a city makes a difference for a local carbon cycle. Hence, a city is sub-divided by built-up, 锛焔reen" (parks, etc.) and informal settlements (favelas) fractions. Another aspect is a sub-division of the additional two regions, which makes the total number reaching eight regions, while the UN divides the world by six. Next, the basic model of the local carbon cycle for urbanized territories is built. We consider two processes: carbon emissions as a result of conversion of natural lands caused by urbanization; and the transformation of carbon flows by "urbanized" ecosystems; when carbon, accumulated by urban vegetation, is exported to the neighbouring territories. The total carbon flow in the model depends, in general, on two groups of parameters. The first includes the NPP, and the sum of living biomass and dead organic matter of ecosystems involved in the process of urbanization, and namely them we calculate here, using a new more realistic approach and taking into account the difference in regional cities' evolution.There is also another group of parameters, dealing with the areas of urban territories, and their annual increments. A method of dynamic forecasting of these parameters, based on the statistical regression model, was already suggested; nevertheless we shall further develop a new technique based on one idea to use the gamma-distribution. This will allow us to calculate the total carbon balance and to show how urbanization shifts it.This article represents one of the consecutive publications dedicated to the following problem: how much does the urbanisation process influence the Global Carbon Cycle (GCC), which was begun by the work [1]. At present there are a lot of different models, which describe various aspects of the GCC, as well as estimates of the values of anthropogenic carbon emissions and terrestrial uptake [2,3]. Since the GCC's
[88] Svirejeva-Hopkins A, Schellnhuber H J.2008.

Urban expansion and its contribution to the regional carbon emissions: Using the model based on the population density distribution

[J]. Ecological Modelling, 216(2): 208-216.

https://doi.org/10.1016/j.ecolmodel.2008.03.023      URL      摘要

The method is used for calculating regional urban area dynamics and the resulting carbon emissions (from the land-conversion) for the period of 1980 till 2050 for the eight world regions. This approach is based on the fact that the spatial distribution of population density is close to the two-parametric Γ -distribution [Kendall, M.G., Stuart, A., 1958. The Advanced Theory of Statistics, vol. 1.2. Academic Press, New York; Vaughn, R., 1987. Urban Spatial Traffic Patterns, Pion, London]. The developed model provides us with the scenario of urbanisation, based on which the regional and world dynamics of carbon emissions and export from cities, and the annual total urban carbon balance are estimated. According to our estimations, world annual emissions of carbon as a result of urbanisation increase up to 1.2502GtC in 2005 and begin to decrease afterwards. If we compare the emission maximum with the annual emission caused by deforestation, 1.3602GtC per year, then we can say that the role of urbanised territories (UT) in the global carbon balance is of a comparable magnitude. Regarding the world annual export of carbon from UT, we observe its monotonous growth by three times, reaching 50502MtC. The latter, is comparable to the amount of carbon transported by rivers into the ocean (196–53702MtC). The current model shows that urbanisation is inhibited in the interval 2020–2030, and by 2050 the growth of urbanised areas would almost stop. Hence, the total balance, being almost constant until 2000, then starts to decrease at an almost constant rate. By the end of the XXI century, the total carbon balance will be equal to zero, with the exchange flows fully balanced, and may even be negative, with the system beginning to take up carbon from the atmosphere, i.e., becomes a “sink”. The regional dynamics is somewhat more complex, i.e., some regions, like China, Asia and Pacific are being active sources of Carbon through the studied period, while others are changing from source to sink or continue to be neutral in respect the GCC.
[89] Wang C, Chen J N, Zou J.2005.

Decomposition of energy-related CO2 emission in China: 1957-2000

[J]. Energy, 30(1): 73-83.

https://doi.org/10.1016/j.energy.2004.04.002      Magsci      [本文引用: 1]      摘要

<h2 class="secHeading" id="section_abstract">Abstract</h2><p id="">This paper analyzes the change of aggregated CO<sub>2</sub> in China from 1957 to 2000 based on a complete decomposition approach&mdash;the logarithmic mean divisia index (LMDI) method. The study indicates that China has achieved a considerable decrease in its CO<sub>2</sub> emissions mainly due to improved energy intensity. In addition, fuel switching and renewable energy penetration also exhibit positive effect to the CO<sub>2</sub> decrease.</p>
[90] Warren-Rhodes K, Koenig A.2001.

Escalating trends in the urban metabolism of Hong Kong: 1971-1997

[J]. AMBIO: A Journal of the Human Environment, 30(7): 429-438.

https://doi.org/10.1016/S0301-4215(00)00053-7      URL      PMID: 11795217      摘要

Urban metabolism measures quantitatively a city's load on the natural environment. We update the Newcombe et al. (3) pioneering study of Hong Kong's urban metabolism in 1971, highlighting trends in resource consumption and waste generation. Per capita food, water and materials consumption have surged since the early 1970s by 20%, 40%, and 149%, respectively. Tremendous pollution has accompanied this growing affluence and materialism, and total air emissions, CO2 outputs, municipal solid wastes, and sewage discharges have risen by 30%, 250%, 245%, and 153%. As a result, systemic overload of land, atmospheric and water systems has occurred. While some strategies to tackle deteriorating environmental quality have succeeded, greater and more far-reaching changes in consumer behavior and government policy are needed if Hong Kong is to achieve its stated goal of becoming "a truly sustainable city" in the 21st century.
[91] Wells J R, Boucher J F, Laurent A B, et al.2012.

Carbon footprint assessment of a paperback book: Can planned integration of deinked market pulp be detrimental to climate

[J]. Journal of Industrial Ecology, 16(2): 212-222.

URL      [本文引用: 1]     

[92] Zhang C, Tian H Q, Chen G S, et al.2012.

Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States

[J]. Environmental Pollution, 164: 89-101.

https://doi.org/10.1016/j.envpol.2012.01.020      URL      PMID: 22343525      [本文引用: 1]      摘要

Using a process-based Dynamic Land Ecosystem Model, we assessed carbon dynamics of urbanized/developed lands in the Southern United States during 1945–2007. The results indicated that approximately 1.72 (1.69–1.77) Pg (1P=10 15 ) carbon was stored in urban/developed lands, comparable to the storage of shrubland or cropland in the region. Urbanization resulted in a release of 0.21Pg carbon to the atmosphere during 1945–2007. Pre-urbanization vegetation type and time since land conversion were two primary factors determining the extent of urbanization impacts on carbon dynamics. After a rapid decline of carbon storage during land conversion, an urban ecosystem gradually accumulates carbon and may compensate for the initial carbon loss in 70–100years. The carbon sequestration rate of urban ecosystem diminishes with time, nearly disappearing in two centuries after land conversion. This study implied that it is important to take urbanization effect into account for assessing regional carbon balance.
[93] Zhang J, Xu L Y.2015.

Embodied carbon budget accounting system for calculating carbon footprint of large hydropower project

[J]. Journal of Cleaner Production, 96: 444-451.

https://doi.org/10.1016/j.jclepro.2013.10.060      URL      摘要

Large hydropower project (LHP) is now the most important renewable and low-carbon source for electricity generation, carbon footprint calculation is crucial for it. We established an embodied carbon budget accounting system for LHP to calculate its actual carbon footprint. In additional to traditional carbon emission from plant construction, the accounting system included two new items in the carbon footprint of a hydropower project: carbon reductions due to the provision of extra services, and carbon emissions due to the decrease in adjacent ecosystem services. We classified these three items into main products and by-products for LHP in its lifecycle, formed a carbon footprint inventory, then quantified the direct and indirect emissions and reductions embodied in these products. This approach leads to a relatively complete carbon footprint assessment. According to this approach, embodied carbon emissions and reductions for the Zhikong hydropower project (Tibet, China) were 3.98×10 12 and 6.89×10 9 gCO 2 equivalents (CO 2 -e), respectively. Therefore, the total carbon footprint is 3.97×10 12 gCO 2 -e, equivalent to a carbon emission intensity of 195gCO 2 -e kWh 611 . This is 111.17% higher than the traditional carbon footprint for this project. The results indicate that the low-carbon status of LHP may be overestimated at present, and could help in preventing the blind enthusiasm on LHP in low-carbon energy choice.
[94] Zhang M Y, Huang X J.2012.

Effects of industrial restructuring on carbon reduction: An analysis of Jiangsu Province, China

[J]. Energy, 44(1): 515-526.

https://doi.org/10.1016/j.energy.2012.05.050      URL      摘要

From the perspective of the development stage of China's economy and the context in which industrial restructuring is highly promoted in China's “Twelve Five-Year Plan”, industrial structure adjustment is an effective way to balance economic growth and carbon reduction. The current study analysed the effects of industrial restructuring on carbon reduction in Jiangsu Province. Using input–output analysis, we calculated both direct and indirect carbon emissions in 1997, 2000, 2002, 2005 and 2007. The study aimed to classify Jiangsu's industrial sectors by the carbon reducing potential (CRP), which was indicated both by carbon reducing efficiency (CRE) and by the amount of carbon reduction (ACR), with a 1% decrease in the output of a certain industrial sector. The results indicate that the high CRE of a certain sector might be due to its high direct carbon intensity, indirect carbon intensity or high economic status. Based on the varying contexts, corresponding policy measures were provided. Moreover, export carbon emissions were abundant in sectors with the highest CRE, indicating the production of emissions due to consumption elsewhere.
[95] Zhao M, Kong Z H, Escobedo F J, et al.2010.

Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China

[J]. Journal of Environmental Management, 91(4): 807-813.

https://doi.org/10.1016/j.jenvman.2009.10.010      Magsci      摘要

<h2 class="secHeading" id="section_abstract">Abstract</h2><p id="">This study quantified carbon storage and sequestration by urban forests and carbon emissions from energy consumption by several industrial sources in Hangzhou, China. Carbon (C) storage and sequestration were quantified using urban forest inventory data and by applying volume-derived biomass equations and other models relating net primary productivity (NPP) and mean annual biomass increments. Industrial energy use C emissions were estimated by accounting for fossil fuel use and assigning C emission factors. Total C storage by Hangzhou's urban forests was estimated at 11.74&#xA0;Tg C, and C storage per hectare was 30.25&#xA0;t C. Carbon sequestration by urban forests was 1,328, 166.55&#xA0;t C/year, and C sequestration per ha was 1.66&#xA0;t C/ha/year. Carbon emissions from industrial energy use in Hangzhou were 7&#xA0;Tg C/year. Urban forests, through sequestration, annually offset 18.57% of the amount of carbon emitted by industrial enterprises, and store an amount of C equivalent to 1.75 times the amount of annual C emitted by industrial energy uses within the city. Management practices for improving Hangzhou's urban forests function of offsetting C emissions from energy consumption are explored. These results can be used to evaluate the urban forests' role in reducing atmospheric carbon dioxide.</p>
[96] Zhao R Q, Huang X J, Liu Y, et al.2014.

Urban carbon footprint and carbon cycle pressure: The case study of Nanjing

[J]. Journal of Geographical Sciences, 24(1): 159-176.

https://doi.org/10.1007/s11442-014-1079-1      Magsci      摘要

<p>Urban carbon footprint reflects the impact and pressure of human activities on urban environment. Based on city level, this paper estimated carbon emissions and carbon footprint of Nanjing city, analyzed urban carbon footprint intensity and carbon cycle pressure and discussed the influencing factors of carbon footprint through LMDI decomposition model. The main conclusions are as follows: (1) The total carbon emissions of Nanjing increased rapidly since 2000, in which the carbon emission from the use of fossil energy was the largest. Meanwhile, carbon sinks of Nanjing presented a declining trend since 2000, which caused the decrease of carbon compensation rate and the increase of urban carbon cycle pressure. (2) The total carbon footprint of Nanjing increased rapidly since 2000, and the carbon deficit was more than ten times of total land areas of Nanjing in 2009, which means Nanjing confronted high carbon cycle pressure. (3) Generally, carbon footprint intensity of Nanjing was on decrease and the carbon footprint productivity was on increase. This indicated that energy utilization rate and carbon efficiency of Nanjing was improved since 2000, and the policy for energy conservation and emission reduction taken by Nanjing's government received better effects. (4) Economic development, population and industrial structure are promoting factors for the increase of carbon footprint of Nanjing, while the industrial carbon footprint intensity was inhibitory factor. (5) Several countermeasures should be taken to decrease urban carbon footprint and alleviate carbon cycle pressure, such as: improvement of the energy efficiency, industrial structure reconstruction, afforestation and environmental protection and land use control. Generally, transition to low-carbon economy is essential for Chinese cities to realize sustainable development in the future.</p>
[97] Zhao R Q, Huang X J, Liu Y, et al.2015.

Carbon emission of regional land use and its decomposition analysis: Case study of Nanjing City, China

[J]. Chinese Geographical Science, 25(2): 198-212.

https://doi.org/10.1007/s11769-014-0714-1      URL      [本文引用: 1]      摘要

Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carbon emissions by Logarithmic Mean Divisia Index(LMDI) model. The main conclusions are as follows: 1) Total anthropogenic carbon emission of Nanjing increased from 1.22928 x 107 t in 2000 to 3.06939 x 107 t in 2009, in which the carbon emission of Inhabitation, mining manufacturing land accounted for 93% of the total. 2) The average land use carbon emission intensity of Nanjing in 2009 was 46.63 t/ha, in which carbon emission intensity of Inhabitation, mining manufacturing land was the highest(200.52 t/ha), which was much higher than that of other land use types. 3) The average carbon source intensity in Nanjing was 16 times of the average carbon sink intensity(2.83 t/ha) in 2009, indicating that Nanjing was confronted with serious carbon deficit and huge carbon cycle pressure. 4) Land use area per unit GDP was an inhibitory factor for the increase of carbon emissions, while the other factors were all contributing factors. 5) Carbon emission effect evaluation should be introduced into land use activities to formulate low-carbon land use strategies in regional development.
[98] Zhao R Q, Huang X J, Zhong T Y, et al.2011.

Carbon footprint of different industrial spaces based on energy consumption in China

[J]. Journal of Geographical Sciences, 21(2): 285-300.

https://doi.org/10.1007/s11442-011-0845-6      Magsci      [本文引用: 1]      摘要

Using energy consumption and land use data of each region of China in 2007, this paper established carbon emission and carbon footprint model based on energy consumption, and estimated the carbon emission amount of fossil energy and rural biomass energy of different regions of China in 2007. Through matching the energy consumption items with industrial spaces, this paper divided industrial spaces into five types: agricultural space, living &amp; industrial-commercial space, transportation industrial space, fishery and water conservancy space, and other industrial space. Then the author analyzed the carbon emission intensity and carbon footprint of each industrial space. Finally, advices of decreasing industrial carbon footprint and optimizing industrial space pattern were put forward. The main conclusions are as following: (1) Total amount of carbon emission from energy consumption of China in 2007 was about 1.65 GtC, in which the proportion of carbon emission from fossil energy was 89%. (2) Carbon emission intensity of industrial space of China in 2007 was 1.98 t/hm<sup>2</sup>, in which, carbon emission intensity of living &amp; industrial-commercial space and of transportation industrial space was 55.16 t/hm<sup>2</sup> and 49.65 t/hm<sup>2</sup> respectively, they were high-carbon-emission industrial spaces among others. (3) Carbon footprint caused by industrial activities of China in 2007 was 522.34×106 hm<sup>2</sup>, which brought about ecological deficit of 28.69×106 hm<sup>2</sup>, which means that the productive lands were not sufficient to compensate for carbon footprint of industrial activities, and the compensating rate was 94.5%. As to the regional carbon footprint, several regions have ecological profit while others have not. In general, the present ecological deficit caused by industrial activities was small in 2007. (4) Per unit area carbon footprint of industrial space in China was about 0.63 hm<sup>2</sup>/hm<sup>2</sup> in 2007, in which that of living &amp; industrial-commercial space was the highest (17.5 hm<sup>2</sup>/hm<sup>2</sup>). The per unit area carbon footprint of different industrial spaces all presented a declining trend from east to west of China.
[99] Zhao R Q, Huang X J, Zhong T Y, et al.2014.

Carbon flow of urban system and its policy implications: The case of Nanjing

[J]. Renewable and Sustainable Energy Reviews, 33: 589-601.

https://doi.org/10.1016/j.rser.2014.02.020      URL      摘要

China is now in the process of rapid urbanization. City壮s operating efficiency was directly determined by the scale and efficiency of energy consumption and flow. The pattern, scale and efficiency of urban carbon flow are not only important indicators that reflect urban efficiency and sustainable development, but also important references in the formulating low-carbon and sustainable energy polices for cities. Through establishing a theoretical framework and calculation method, this paper studied the carbon flows of Nanjing urban system in three different levels. It shows that urban production and transportation system, urban living system, rural production system and rural living systems are the major part of urban system in the carbon flow. The carbon flows between Nanjing and the external system, was much higher than the carbon flows among different internal subsystems. If the embodied carbon is taken into account, carbon flow from the urban to rural system of Nanjing was clearly greater than the flow in the opposite direction. With economic development and the implement of energy-saving and emission reduction policy, the carbon productivity and carbon flow efficiency in Nanjing has improved significantly since 2000. Fossil energy consumption, urbanization, agricultural activities, rural life demands and trade are key factors with major impact on urban carbon flows in Nanjing. Therefore, adjusting industrial structure, urban expansion control, and developing renewable energy are main measures to realize sustainable development of Najing city. Furthermore, the dual urban鈥搑ural structure in Nanjing brought large exchanges of products and embodied carbon between urban and rural areas, indicates that urban carbon flow and its efficiency was highly influenced by urban鈥搑ural structure, which will further aggravate carbon flow burden of urban systems.

/